

화학사고 사례연구 필터 세정작업 중 염화메틸렌 누출사고

목차 Contents

١.	사고개요	,	3
ΙΙ.	사업장 현황	•	4
Ⅲ.	사고분석	,	9
IV.	사고발생 원인	1	2
٧.	동종사고 예방대책	1	3
VI.	사고로부터 얻은 교훈	1	4
VII.	유사 사고사례	1	6
VIII.	참고자료	1	8
IX.	부록	1	9

용어설명

광학필름

• TV. 모니터 등에 사용되는 LCD 편광판 내의 편광필름을 보호해주는 필름을 말한다.

RMA(Recycle Methyl Alcohol) 02

• 클리닝(세정)용 용제로 MC(염화메틸렌, Methylene Chloride)가 90 %, MA(메탄올, Methyl Alcohol)가 10 %로 혼합된 용제이다.

도프(Dope)용액 03

• TAC(Tri-Acetyl Cellulose) Flake. 가소제 등의 주원료를 RMA 용제에 용해하여 제조되는 용액이다. 셀룰로오스류의 진한 용액을 칭하며 점성이 높은 액체이다.

호흡용 보호구 04

• 산소가 결핍된 공기의 흡입으로 인한 건강장해예방 또는 유해물질로 오염된 공기 등을 흡입함으 로써 발생할 수 있는 건강장해를 예방하기 위하여 고안된 보호구이다. 종류로는 방진마스크, 방독마스크, 방진방독 겸용마스크, 송기마스크, 공기호흡기 등이 있다.

JSA(작업안전분석, Job Safety Analysis)

• 특정한 작업을 주요 단계(Key Step)로 구분하여 각 단계별 유해위험요인(Hazards)과 잠재적인 사고(Accidents)를 파악하고, 유해위험요인과 사고를 제거, 최소화 및 예방하기 위한 대책을 개발하기 위해 작업을 연구하는 기법을 말한다.

1. 사고개요

2018년 11월 8일(금) ○○㈜ 내 광학필름 제조공정에서 필터 세정작업 중 용제저장탱크 상 부의 벤트 배관의 플랜지 부위로 RMA 용제(염화메틸렌 함유)가 누출되어, 근로자 5명이 염 화메틸렌 증기로 인해 중독되는 사고가 발생하였다.

[사진 1] 누출이 발생한 벤트 배관 플랜지

1) 인명피해

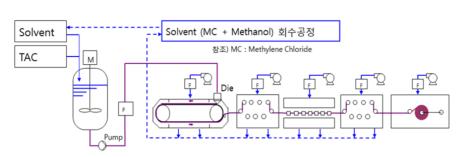
- 중독 5명 및 2도 화상 4명
 - ※ 화상은 염화메틸렌 접촉에 의한 화학적 화상임

2) 물적피해

없음

Ⅱ. 사업장 현황

○○㈜는 가소제 등의 주원료를 염화메틸렌이 포함된 용제에 용해하여 제조한 용액을 여과 공정을 거쳐 연신, 건조 등의 후속공정을 통해 광학필름으로 가공하는 사업장이다.


시설현황

1) 광학필름 제조공정

- 광학필름의 원·부재료인 TAC Flake 등을 용해한 용액인 도프(Dope)용액을 제조한 후 여과 공정을 거쳐 연신, 건조, 권취 등의 후속공정을 통해 가공하는 공정이다.
- 사고가 발생한 여과 공정의 필터 세정작업은 도프용액 여과 설비인 필터를 세정하는 작업으로, 용해가 완료된 도프용액은 유입된 이물질 및 미용해물을 걸러내기 위해 여과 공정을 거치게 되 며, 여과 공정에는 메인 필터를 세정하고 여과지를 교체하여 재사용할 수 있도록 하는 작업이 포함되어 있다.

[그림 1] 도프용액 제조공정

원,부재료	Dope 공정	Steel Belt	Pre-Dryer	Tenter	Dryer	Winder
TAC FlakeCABSolvent	- TAC 용해 - Filtering	- Dope 토출 - Belt Casting	- 열풍 건조	- 횡 연신 - 열풍 건조	- 열풍 건조	- 제품 권취

[그림 2] 광학필름 제조공정

사고 발생 물질

1) RMA(Recycle Methyl Alcohol)

물질명	구성성분 (CAS No.)	함유율 (%)	끓는점 (℃)	증기밀도 (공기=1)	인화점 (℃)	증기압
DMA	염화메틸렌 (75-09-2)	90	40	2.9	자료 없음	435 mmHg (@25 ℃)
RMA	메탄올 (67-56-1)	10	65	1.11	12	12.8 kPa (@20 ℃)

2) 염화메틸렌 (MC, Methyl Chloride)

• 한 글 명 : 염화메틸렌, 메틸렌클로라이드, 디클로로메탄

• 화 학 식 : CH₂Cl₂

• CAS번호: 75-09-2

• 비 중: 1.3266(20 °C)

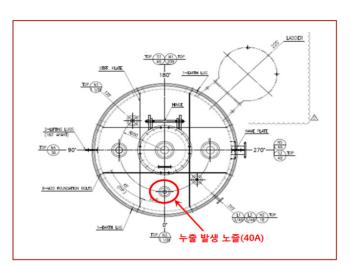
• 성 상 : 무색(투명)의 휘발성 액체

• 인 화 점 : 상온에서 비인화성

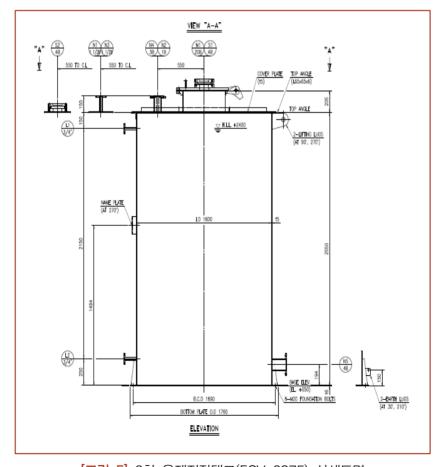
• 특 징 : 눈과 손이 움직임 저하, 수행능력저하에서 마취작용에 이르며, 고농도 노출의 경우 사망에까지 이름

※ 주요 증상 및 건강영향

- 급성 장해는 중추신경 억제작용이며, 심장독성, 신장독성도 가능함
- 중추신경계 : 작용의 범위는 눈과 손의 움직임 저하. 수행능력저하에서 마취작용에 이르며, 고농 도 노출의 경우 사망에 까지 이름
- 심장(일산화탄소 중독) : 염화메틸렌이 일산화탄소로 대사되어 혈액 내 심장조직에서 이용할 수 있는 산소의 양을 감소시킴으로서 심장조직에 영향(급성 심근경색 발생 가능)을 줌
- 간의 효소를 상승시키고, 호흡기와 눈 등 피부에 자극을 줌

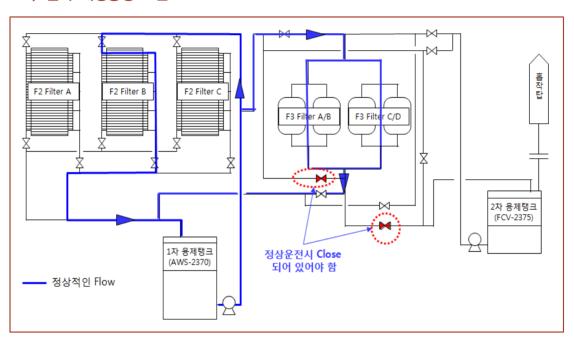


[그림 3] 염화메틸렌 특성 및 경고표지 그림문자


사고 발생 설비 03

명칭	사양	압력(kç	g/cm²)	온도	$\overline{C}(\mathbb{C})$	TUZI	용량	비고
56	(mm)	운전	설계	운전	설계	재질	(m³)	(설비번호)
2차 용제저장탱크 (Filter Cleaning Tank)	D 1,600 H 2,500	ATM	F.L	AMB	80	SUS304	5.2	FCV-2375

- ※ 2013년도 제작
- * ATM: Atmosphere, AMB: Ambient Temperature


[그림 4] 2차 용제저장탱크(FCV-2375) 상부 상세도면

[그림 5] 2차 용제저장탱크(FCV-2375) 상세도면

04 공정

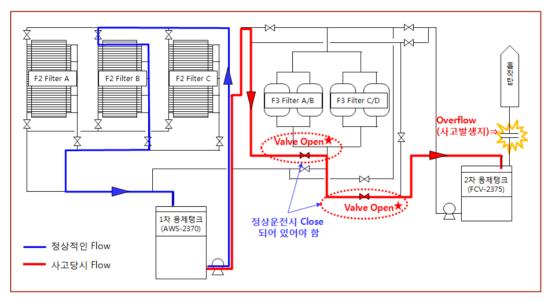
1) 필터 세정공정 흐름도

[그림 6] 필터 세정공정 개략도

- AWS-2370 : F2, F3 필터 1차 세정용 용제 저장탱크
 - ① F2 필터 세정: (AWS-2370) → F2 필터 → (AWS-2370)
 - ② F3 필터 세정: (AWS-2370) → F3 필터 → (AWS-2370)
- FCV-2375 : F3 필터 2차 세정용 용제 저장탱크
 - ① F3 필터 세정: (FCV-2375) → F3 필터 → (FCV-2375)

Ⅲ. 사고분석

01 사고 발생 과정


1) 작업 상황

일 시	작업 상황
11/7(수)	• 2차 용제저장탱크(FCV-2375)의 용제를 이송하여 F3 필터 세정 작업 시작
11/8(목) 02:01	•F3 필터 세정작업 종료
08:08	•F3 필터 내 잔량을 드레인하기 위해 2차 용제저장탱크 연결 배관상의 차단밸브 (★, 그림 7 참조) 개방
10:45	• 개방된 차단밸브(★, 그림 7 참조)를 잠그지 않고, F2 필터의 토출배관의 차단밸브를 개방
11:31	• F2 필터 세정작업 시작
11:33	• 2차 용제저장탱크(FCV-2375) 상부 측 벤트배관의 플랜지를 통해 RMA 용제 누출 시작 (1시간 정도 누출 지속됨)
11:51	• 현장작업자 2명 중독으로 쓰러짐
12:02	• 쓰러진 현장작업자 2명 구출 도중 구조작업자 3명 쓰러짐

02 사고 원인 분석

1) 공정 및 작업관리 미흡

- ✓ 탱크 액위관리 미흡, 세정작업 절차 미흡에 의한 용제의 누출
- 용제저장탱크의 고액위를 감지하여 펌프 가동 중단, 밸브 차단 등의 동작을 위한 인터록 장치가 구성되어 있지 않았고, 세정작업과 관련하여 밸브 개폐여부 및 조작순서 등 작업절차가 미흡하여 일부 밸브를 개방상태에서 작업 중 RMA 용제가 누출되었다.

[그림 7] 필터 세정공정 개략도 및 사고발생 지점

2) 설비관리 미흡

- ✓ 배관접합부 불량에 의한 용제의 누출
- 2차 용제 저장탱크(FCV-2375) 상부 노즐 배관의 플랜지 접합부 볼트 체결 부위가 완벽하게 조여지지 않아 내부 내용물인 RMA 용제가 누출되었다.

3) 안전관리의 부적합

- ✓ 작업 및 구조용 보호구의 부적합으로 인한 중독 발생
- 염화메틸렌 증기에 적합하지 않은 보호구를 착용하고 구조활동을 실시하였다.

4) 결론

• 금번 사고의 경우, 사고 발생 현황과 작업내용 등을 검토한 결과 액위 관리 등 공정관리 미흡, 작업절차 미흡, 설비관리 미흡, 물질에 대한 보호구의 부적합이 원인인 것으로 분석된다.

■ 사고근본원인분석(RCA; Root Cause Analysis)

• 사고 발생에 대한 직·간접 원인 등을 종합하면 액위 등 공정관리 및 세정 시 밸브관리 등 작업결 함, 용제탱크 상부 플랜지 접합부 결함, 부적합한 보호구의 착용 등 기술결함으로 인하여 사고가 발생한 것으로 추정된다.

 단계	사고원인 1	사고원인 2	사고원인 3	
근계	시끄런한 1	시끄런던 2	시끄런한 3	
1. 결함내용 분류	작업결함	기기결함	기술결함	
2. 관련 조직	생산팀	정비팀	안전팀	
3. 결함 종류	작업계획	정비계획	선정계획	
4. 결함 대분류	작업절차	예방정비	보호구	
5. 결함 중분류	작업절차서 미흡	예방정비 미흡	보호구 부적합	
6. 결함 소분류	세정작업 시 용제저장탱크 액위 감시 절차 미작성 밸브 개폐확인 및 조작순서 등 상세 작업절차 미작성	• 배관의 플랜지 접합부 볼트 체결부위 결합 불량 미발견	• 염화메틸렌에 적합한 호흡용 보호구 미검토 및 비상구조용 보호구 미비치	

Ⅳ. 사고발생 원인

원인 1 / 저장탱크 액위(Level) 관리 미흡

• 2차 용제저장탱크(FCV-2375)는 정상운전 시 액위 100 %기준으로 관리되고 있어. 추가로 용제 가 유입될 경우 액위가 감지되지 않아 Overflow될 위험이 있었으나, 탱크의 고액위를 감지하여 펌프 가동 중단, 밸브 차단 등의 동작을 위한 인터록장치가 구성되어 있지 않아 누출을 차단할 수 없었다.

원인 2 / 배관접합부 누출방지조치 미흡

• 2차 용제저장탱크(FCV-2375) 상부 노즐과 흡착탑으로 연결되는 벤트 배관의 플랜지 접합부 볼트체결 부위가 완벽하게 조여지지 않아 내부 내용물인 염화메틸렌 용제가 누출되었다.

원인 3 / 세정작업 안전운전절차서의 작성 미흡

• 필터 세정작업 시 작업자가 다수의 자동밸브를 수동(현장 혹은 원격)으로 조작하여 세정용 용제 이송 배관 경로를 구성해야 하기 때문에 해당 작업에 대해 밸브 개폐확인 및 조작순서 등 상세한 작업절차가 안전운전절차서 상 포함되어야 하나 해당 내용이 작성되어 있지 않았다.

원인 4 / 호흡용 안전보호구 착용 부적절

• 용제의 염화메틸렌 증기에 적합하지 않은 호흡용보호구(방진마스크)를 착용하여 화학물질 중독 피해를 입었으며, 신속히 대피하는데 어려움이 있었다.

🗐 원인 5 _/ 비상대피로 확보 미흡

• 용제(염화메틸렌) 누출 시 신속히 대피하기 위한 비상대피로가 확보되지 않아, 용제가 누출된 장소를 통해 대피함으로써. 고농도의 염화메틸렌 증기에 노출되어 중독 등 피해가 커졌다.

V. 동종사고 예방대책

대책 1 / 저장탱크 액위(Level) 관리 시스템 보완

- 저장탱크는 설계용량 대비 충분한 여유율을 고려하여 정상운전 시의 레벨을 설정하고, 각 저장탱 크 별로 고액위를 감지할 수 있는 레벨트랜스미터를 설치해야 한다.
- 또한, 설정치 도달 시 용제 이송펌프, 용제 공급/회수배관 상의 차단밸브와 연동하여 탱크내부로 의 용제 유입을 차단할 수 있도록 관련 인터록 시스템을 구성해야 한다.

대책 2 / 화학설비 또는 그 배관의 접합부 누출방지 조치

• 누출 시 화학물질 중독, 화재/폭발 등의 피해가 우려되는 화학물질을 취급하는 설비 또는 그 배관의 플랜지 등의 접합부는 누출이 발생하지 않도록 접합부의 볼트를 완벽히 체결하고 적합한 재질. 내구성을 지닌 개스킷을 사용하여 접합면을 밀착시켜야 하며. 주기적인 점검을 실시하여야 한다.

대책 3 / 안전운전절차서 보완

• 안전운전절차서에는 세정작업을 위한 세정용 용제 이송 배관경로 상 조작해야 하는 밸브의 기기 번호(Tag No.), 조작순서, 개폐 상태 등을 포함하여 알기 쉽도록 도식화하여 작성해야 한다.

대책 4 / 적합한 호흡용보호구 착용

- RMA 용제 취급 또는 사용 작업 시. 염화메틸렌 증기에 의한 중독을 방지하기 위해 방독마스크 를 착용하는 등 적합한 호흡용보호구를 착용해야 한다.
- 또한, 사고 발생 시 구조작업을 하기 위해 사고 현장에 들어가는 구조자는 지급식 공기호흡기를 착용하고 구조활동을 해야 한다.

대책 5 / 비상대피로 확보

• 용제(염화메틸렌) 등 증기 누출이나 화재 발생 시, 작업자가 신속히 대피하기 위하여 출입구 이외에 안전한 장소로 대피할 수 있는 1개 이상의 비상대피로를 확보하여야 한다.

VI. 사고로부터 얻은 교훈

역화메틸렌 중독사고로부터 얻은 교훈은 다음과 같다.

교훈 1 / 안전작업절차는 반드시 지속·개선되어야 한다.

- 이번 사고는 작업자가 다수의 자동밸브를 수동(현장 또는 원격)으로 조작하여 필터의 세정작업을 수행하는 과정에서 일부 개방된 밸브에 대해 적절한 조치를 못한 상태로 다음 작업을 수행한데서 비롯된 휴먼에러(Human Error)이다.
- 휴먼에러를 방지하기 위해서는 계장장치를 이용한 인터록 구성 등 제어시스템을 구축하는 것도 하나의 방법일 수 있겠으나. 기본적으로는 구축된 제어시스템의 내용까지 포함된 안전작업절차 를 세부적으로 작성하고 지속적으로 보완하는 것이 우선되어야 한다.
- 안전작업절차서는 해당작업에 경험이 없는 작업자라도 최소한의 지도 또는 다른 작업자의 도움을 받아 누구든지 그 절차에 의거하여 작업을 할 수 있도록 명확하게 구체적으로 작성되어야 하며, 물질의 유해위험성, 적합한 보호구 등이 충분히 명시되어야 한다.
- 명확하고 구체적으로 작성된 안전작업절차서는 주기적인 교육과체계적인 훈련을 위한 기초자료 가 되며, 이는 휴먼에러로 발생할 수 있는 사고를 방지하는 첫 번째 방법이라 할 수 있다.

교훈 2 / 위험성평가는 선택이 아닌 필수사항이다.

• 명확하고 구체적으로 안전작업절차서를 작성한 후에는, 해당 내용을 바탕으로 발생 가능한 모든 위험성을 지속. 검토하여야 한다. 위험성평가는 정상적인 공정 가동 중에 발생 가능한 공정 위험 성평가와. 일상 작업과 정기보수작업 등 모든 작업에 대한 위험성을 도출해내는 작업 위험성평가 로 구분할 수 있다.

• 특히, 작업 위험성평가를 활용하여 해당 작업 내용, 순서, 절차 등에 대한 다양한 관점에서 위험성 을 검토해 보아야 하며 도출된 위험요인이나 개선대책은 반드시 안전작업절차서에 반영하여 변 경하고 교육과 훈련으로 이어져야 한다.

교훈 3 / 적합한 보호구에 대해 알고 있어야 한다.

- 클리닝(세정)용 용제인 RMA는 염화메틸렌이 혼합된 물질이며, 염화메틸렌 유증기는 작업자에게 노출될 경우 중추신경 억제작용을 통해 눈과 손의 움직임 저하, 마취작용에 이르며 고농도 노출 의 경우 사망에까지 이르게 할 수 있는 물질이다.
- 적합한 보호구에 대해 안다는 것은 관련 물질의 유해위험성에 대해 알고 있다는 것이고, 보호구를 반드시 착용하게 되는 교육적인 효과도 발생한다.
- 이번 사고도 부적합 보호구 사용으로 대피에 실패하였으며, 구조자 또한 중독되었으므로, 이를 간과한다면 다음번에는 대형사고로 이어질 수 있다는 것을 명심해야 한다.

Ⅶ. 유사 사고사례

지하 피트에 누출된 MC에 중독, 사망

발생일시	2010년 2월
사고장소	경기 소재 세척·도장공장
피해내용	중독 2명(사망)
사고내용	• 세척공정 내 탈지조의 드레인 밸브에서 누출된 염화메틸렌을 청소하러 지하 피트에 들어갔다가 바닥에 누출되어 있던 염화메틸렌 증기에 중독, 질식되어 사망

02 세척기 내부 MC에 의한 중독

발생일시	2012년 6월
사고장소	충북 소재 공장
피해내용	1명 사망
사고내용	• 세척기 내부의 증기조에 떨어져 있는 반제품을 회수하기 위하여 내부로 진입하여 염 화메틸렌에 중독, 사망

03 플랜지에서 MC 누출에 의한 중독

발생일시	2013년 2월
사고장소	충북 소재 공장
피해내용	2명 중독
사고내용	• MC(Methylene Chloride) 추출기 정비 작업 중 플랜지 부분에서 누출된 MC 증기에 노출(흡입)되어 작업자 2명이 중독

세척조 내부 누출된 MC에 중독

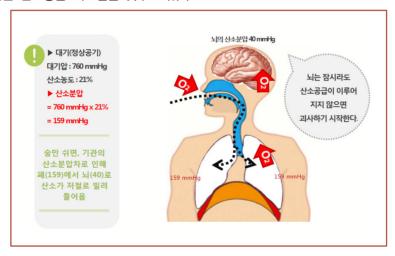
발생일시	2014년 2월
사고장소	울산 소재 도장공장
피해내용	2명 중독
사고내용	• 금속제품(도장공정에서 사용하는 지그)에 묻은 페인트를 제거하는 작업장에서 디핑세 척조 내부의 슬러지를 제거하는 작업 중 세척조 내부에 누출되어 있던 MC에 중독

05 탱크 하부에서 누출된 MC 흡입

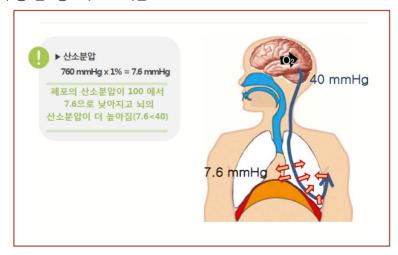
발생일시	2018년 9월
사고장소	충북 소재 공장
피해내용	3명 흡입
사고내용	• 폐용매 리시버 탱크 점검 중 탱크 하부로부터 누출된 염화메틸렌 증기를 흡입

Ⅷ. 참고자료

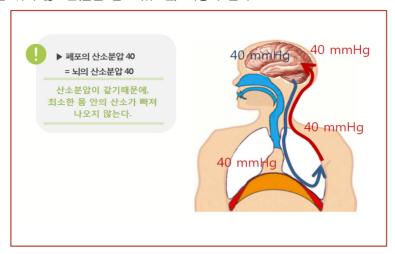
- 1. 중대산업사고 조사의견서, 한국산업안전보건공단; 2018
- 2. KOSHA Guide P-151-2016 사고의 근본원인 분석기법에 관한 기술지침
- 3. KOSHA Guide P-108-2012 안전운전절차서 작성에 관한 기술지침
- 4. KOSHA Guide P-140-2013 작업안전분석(Job Safety Analysis) 기법에 관한 기술지침
- 5. KOSHA Guide H-82-2015 호흡용 보호구의 사용지침
- 6. KOSHA Guide H-150-2014 화학물질별 추천 호흡보호구



Ⅸ. 부록



1) 질식, 중독의 매커니즘(Mechanism)


• 우리의 몸은 산소공급 시스템을 갖추고 있다.

• 만약, 대기 중 산소농도가 1 %라면?

• 그럼, 숨을 쉬지 않으면(숨을 참고 있으면) 어떻게 될까?

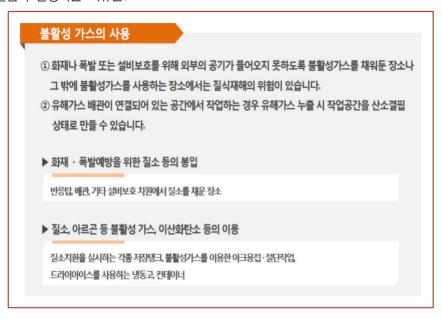
• 그럼, 산소농도가 1 %인 환경에서 한숨을 쉬게 되면 어떻게 될까?

• 질식이란?

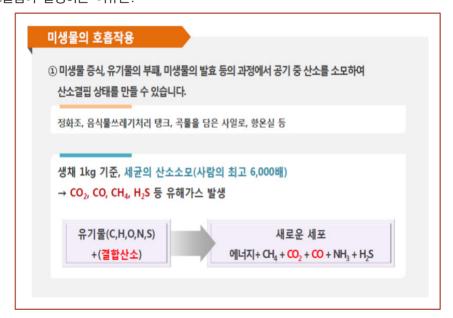
• 산소결핍이 발생하는 이유는?

- ① 저장용 탱크 소재의 산화, 저장 또는 운반물질이 산화되면 공기중의 산소가 빠르게 감소되므로 질식이 일어날 수 있습니다.
- ▶ 저장용 탱크 소재의 산화

철재 탱크 내에 물기가 있거나 장기간 밀폐되면 내벽이 산화되어 녹이 발생할 때 탱크내의 산소를 감소시키므로 산소결핍 상태가 됩니다.


강제의 보일러, 탱크 반응탑, 압력용기, 가스홀더, 반응기, 추출기, 분리기, 열교환기, 선창, 선박의 이중저 등 내부

▶ 저장 또는 운반물질의 산화


석탄 강재, 고철 등은 상온에서도 공기 중의 산소를 소비합니다.

석탄 강재, 고철 등을 담은 탱크, 호퍼, 사일로, 유개화차 등의 내부

• 산소결핍이 발생하는 이유는?

• 산소결핍이 발생하는 이유는?

• 일산화탄소(CO) 중독 발생기전

• 황화수소(H₂S) 중독 발생기전

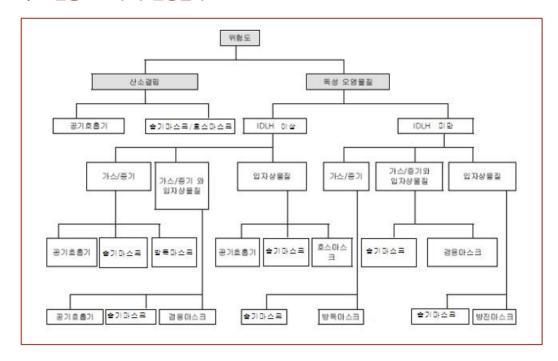
• 화학적 질식가스?

2) 기능별 호흡용 보호구의 종류

분류	공기정	화식 ^{주1)}	공기공급식		
종류	비전동식 전동식		송기식	자급식 ^{주2)}	
안면부 등의 형태	전면형, 반면형, 1/4형	전면형, 반면형	전면형, 반면형, 페이스실드, 후드	전면형	
보호구명	방진마스크, 방독마스크, 겸용마스크 (방진방독)	전동팬부착 방진마스크, 방독마스크, 겸용마스크 (방진방독)	송기마스크, 호스마스크	공기호흡기(개방식) 산소호흡기(폐쇄식)	

주1) 공기정화식에는 안면부 여과식 방진마스크 포함

주2) 자급식(SCBA : self contained breathing apparatus)


• 공기정화식은 오염공기가 호흡기로 흡입되기 전에 여과재 또는 정화통을 통과시켜 오명물질을 제거하는 방식으로서 다음과 같이 비전동식과 전동식으로 분류

비전동식	별도의 송풍장치 없이 오염공기가 여과재 또는 정화통을 통과한 뒤 정화된 공기가 안면부 로 가도록 고안된 형태
전동식	오염공기가 여과재 또는 정회통을 통과한 뒤 정화된 공기가 안면부로 가도록 고안된 것으로서 이 때 송풍장치를 사용한 형태

• 공기공급식은 공기 공급관, 공기호스 또는 지급식 공기원(산소탱크 등)을 가진 호흡용 보호구로서 신선한 호흡용 공기만을 공급하는 방식으로서 송기식과 지급식으로 분류한다.

송기식	공기 호스 등으로 호흡용 공기를 공급할 수 있도록 설계된 형태
자급식	호흡용 보호구 사용자의 몸에 지닌 압력공기실린더, 압력산소실린더 또는 산소발생장치가 작동되어 호흡용 공기가 공급되도록 한 형태

3) 호흡용 보호구의 선정절차

- * IDLH(Immediately Dangerous to Life or Health)
 - : 생명 또는 건강에 즉각적으로 위험을 초래하는 농도로서 그 이상의 농도에서 30분간 노출되면 사망 또는 회복 불가능한 건강장해를 일으킬 수 있는 농도를 말한다.

4) MC(염화메틸렌)에 대한 추천 호흡용 보호구

일련		유해물질의 명칭				노출기준			비고	
번호		국문표기	영문표기		화학식	TWA		STEL		(CAS번호 등)
		76301				ppm	mg/m³	ppm	mg/m³	(01)(11)
117	디클로로메탄		Dichloromethane		CH ₂ Cl ₂	50	175		_	[75-09-2]
	(메틸렌클로라이드)		(Methylene chloride)							발암성 2
IDLH (p	H (ppm) 냄새서한도(j		pm)	분자량	끓는 점(끓는 점(℃)		증기압(mmHg)		폭발 하한점(%)
2300 (발약	2300 (발암성) 1.2-440			84.9	40		350			13
노출경로	흡입,	흡입, 피부흡수, 소화기계, 피부와/혹은 눈 접촉								
증상 눈, 피부 자극, 무럭감, 졸음, 현기증; 팔다리 무감각, 사지 따끔거림; 메스꺼움; [잠재적 직업성 발암물질]										
추천 호흡보호-							크(반면형은 안 됨),			

[※] 부록출처: [2018-교육미디어-414] 질식은 바로 죽음입니다(밀폐공간 위험작업 보유사업장)

작 성

서 찬 석 (안전보건공단 충남지역본부 화학사고예방센터(서산))
강 규 철 (안전보건공단 충남지역본부 화학사고예방센터(서산))
김 상 길 (안전보건공단 충남지역본부 화학사고예방센터(서산))
봉 원 우 (안전보건공단 충남지역본부 화학사고예방센터(서산))

검 토

권 혁 면 (연세대학교 산학협력단)

윤 동 현 (윤테크)

주 종 대 (산업안전환경기술원)

권 현 길 (안전보건공단 교육원)

안전보건공단 전문기술실 전문기술부

2019-전문기술-302

『필터 세정작업 중 염화메틸렌 누출사고』 사례 연구

발 행 일 2019년 7월 1일

발 행 인 한국산업안전보건공단 이사장 박두용

발 행 처 한국산업안전보건공단 전문기술실

주 소 울산광역시 중구 종가로 400

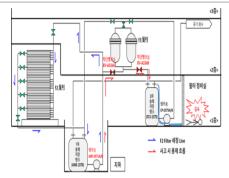
전 화 (052) 703-0600

F A X (052) 703-0312

Homepage http://www.kosha.or.kr

디 자 인 · 인 쇄 (사)한국신체장애인복지회 ☎ 02.6401.8891

※무단 복사 및 복제하여 사용하는 것을 금지함


과산화수소 사고사례(2018.2.28.)

본 사례는 국내에서 발생한 화학사고에 대하여 안전보건공단에서 동종사고의 재발방지를 위하여 관련 사업장에 무료로 배포하오니 근로자에게 충분히 교육하여 동종사고가 발생하지 않도록 만전을 기하여 주시기 바랍니다.

과산화수소 농축공정 TOC BED 파열사고

사고개요

2018년 11월 8일(금) OO㈜ 내 광학필름 제조공정에서 필터 세정 작업 중 용제저장탱크 상부의 벤트 배관의 플랜지 부위로 용제(염화메틸렌)가 누출되어, 근로자 5명이 누출된 염화메틸렌 증기로 인해 중독 및 화상을 입은 재해임

[그림 1] 용제 누출 경위 개략도

[사진 1] 누출이 발생한 벤트 배관 플랜지

01 사고발생공정 및 물질

• 사업장내 광학필름의 원료를 용해한 용액 제조공정에서 여과 설비인 필터를 세정하는 작업 중 누출된 염화메틸 렌에 중독됨.

원료입고 → 혼합 → 용해 → <mark>여과 (필터 세정)</mark> → 이송 사고발생공정

• 사고발생물질 (RMA, 세정용 용제)

물질명	구성성분 (CAS No.)	함유율 (%)	끓는점 (℃)	증기밀도 (공기=1)	인화점 (°C)	증기압
RMA -	염화메틸렌 (75-09-2)	90	40	2.9	자료 없음	435 mmHg (@25 ℃)
	메탄올 (67-56-1)	10	65	1.11	12	12.8 kPa (@20 °C)

☞ 염화메틸렌의 중독 주요 증상 및 건강영향

- · 급성 장해는 중추신경 억제작용이며, 심장독성, 신장독성도 가능함
- · 중추신경계 : 작용의 범위는 눈과 손의 움직임 저하, 수행능력저하에서 마취작용에 이르며, 고 농도 노출의 경우 사망에 까지 이름
- · 심장(일산화탄소 중독) : 염화메틸렌이 일산화탄소로 대사되어 혈액 내 심장조직에서 이용할 수 있는 산소의 양을 감소시킴으로서 심장조직에 영향(급성 심근경색 발생 가능)을 줌
- · 간의 효소를 상승시키고, 호흡기와 눈 등 피부에 자극을 줌

02 사고발생원인

• 저장탱크 액위(Level) 관리 미흡

- 용제저장탱크는 탱크의 고액위(Level)를 감지하여 펌프 가동 중단, 밸브 차단 등의 동작을 위한 인터록 장치가 구성되어 있지 않아 누출을 차단할 수 없었음.

• 배관접합부 누출방지조치 미흡

- 용제저장탱크 상부 노즐(40A)과 흡착탑으로 연결되는 벤트 배관의 플랜지 접합부 볼트 체결 부위가 완벽히 조여지지 않아 내부 내용물인 역화메틸렌 용제가 누출됨.

• 세정작업 안전운전절차서의 작성 미흡

- 필터 세정작업 시 작업자가 다수의 자동밸브를 수동(현장 혹은 원격)으로 조작하여 세정용 용제 이송 배관 경로를 구성해야 하기 때문에 해당 작업에 대해 밸브 개폐확인 및 조작순서 등 상세한 작업 절차가 안전운전 절차서 상 포함되어야 하나 해당 내용이 작성되어 있지 않았음.

• 호흡용 안전보호구 착용 부적절

- 용제의 염화메틸렌(MC, Methylene Chloride)의 증기에 적합하지 않은 호흡용 안전보호구(방진마스크)를 착용하여 화학물질 중독 피해를 입었으며, 신속히 대피하는데 어려움이 있었음.

• 비상대피로 확보 미흡

- 용제(염화메틸렌) 누출 시 신속히 대피하기 위한 비상대피로가 확보되지 않아, 용제(염화메틸렌)가 누출된 장소를 통해 대피함으로써 고농도의 염화메틸렌 증기에 노출되어 중독 등 피해가 커짐.

03 동종사고 예방대책

• 저장탱크 액위(Level) 관리 시스템 보완

- 저장탱크는 설계용량 대비 충분한 여유율을 고려하여 정상운전 시의 레벨을 설정하고, 각 저장탱크 별고액위(Level)를 감지할 수 있는 레벨트랜스미터를 설치하고 설정치 도달 시, 용제 이송펌프, 용제 공급/회수배관 상의 차단밸브와 연동하여 탱크 내부로의 용제 유입을 차단할 수 있도록 관련 인터록 시스템을 구성해야 함.

• 화학설비 또는 그 배관의 접합부 누출방지 조치

- 누출 시 화학물질 중독, 화재/폭발 등의 피해가 우려되는 화학물질을 취급하는 설비 또는 그 배관의 플랜지 등의 접합부는 누출이 발생하지 않도록 접합부의 볼트를 완벽히 체결하고 적합한 재질, 내구성을 지닌 개스킷을 사용하여 접합면을 밀착시켜야 하며 주기적인 설비점검을 실시하여야 함.

• 안전운전절차서 보완

- 안전운전절차서에는 세정작업을 위한 세정용 용제 이송 배관경로 상 조작해야하는 밸브의 기기번호(Tag No.), 조작 순서, 개폐 상태 등을 포함하여 알기 쉽도록 도식화하여 작성해야함.

• 적합한 호흡용보호구 착용

- RMA 용제 취급 또는 사용 작업 시, 염화메틸렌(MC, Methylene Chloride) 증기에 의한 중독을 방지하기 위해 방독마스크를 착용하는 등 적합한 호흡용 보호구를 착용해야 함.
- 사고 발생 시, 구조작업을 하기 위해 사고 현장에 들어가는 구조자는 자급식 공기호흡기를 착용한 채 구조활동을 하여야 함.

• 비상대피로 확보

- 용제(염화메틸렌) 등 증기 누출이나 화재 발생 시, 작업자가 신속히 대피하기 위하여 출입구 이외에 안전한 장소로 대피할 수 있는 1개 이상의 비상대피로를 확보하여야 함.