

화학사고 사례연구 구동밸브 오조작으로 인한 혼합C4 누출사고

목 차 Contents

١.	사고개요		3
ΙΙ.	사업장 현황	. 4	4
Ⅲ.	사고분석	12	2
IV.	사고발생 원인	19	9
٧.	동종사고 예방대책	20	Э
VI.	사고로부터 얻은 교훈	2	1
VII.	유사 사고사례	23	3
VIII.	참고자료	2	5
IX.	부록	26	3

용어설명

공기구동밸브(AOV; Air Operated Valve)

• 공기 압력에 의하여 구동되는 밸브를 총칭한다. 사고가 발생한 공기구동밸브는 일반적인 게이트 밸브에 부착하여 인력을 이용하지 않고 공기압력을 이용하여 작동하는 방식의 밸브이다.

열교환기(Heat Exchanger)

• 2개의 유체(고온액체와 저온액체) 사이에서 열의 이동을 실시하는 장치를 말한다. 화학공업이나 일반 빌딩의 난방, 급탕용 등 폭넓게 사용되고 있는 압력용기를 말한다.

증류탑(Distillation Tower) 03

• 탑 내부가 여러 단으로 구성되어 있으며, 내부의 각 단마다 온도와 압력이 조금씩 달라 각 성분에 대한 기 • 액평형이 이루어져 분리가 이루어지는 구조이다. 즉, 저비점 화합물은 낮은 온도에서 끓어 기체로 되어 윗단에 더 많이 분포되고, 반대로 고비점 화합물은 더 높은 온도에서 끓기 때문에 기체로 증발되지 않고 액상으로 많이 존재하여 아랫단에 더 많이 분포하게 되는 원리를 가진다.

1. 사고개요

2018년 8월 17일(금) OO사 1,3-부타디엔 공장에서 열교환기 세척 후 크레인으로 열교환기 덮개(channel)를 설치하던 중 증류탑의 구동밸브 조작기 오조작으로 밸브가 열려 증류탑 내 부의 혼합C4 및 추출용매(DMF)가 누출된 사고이다.

[그림 1] 사고 물질이 누출되는 모습

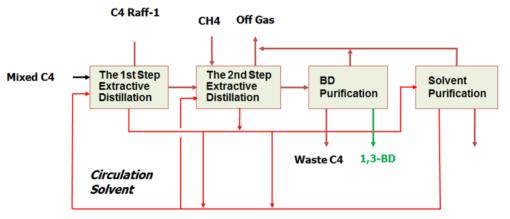
1) 인명피해

• 부상 1명(사고 발생 시 대피 중 늑골골절)

2) 물적피해

• 생산손실 및 인근 주차차량 도장비용 : 약 100억

11. 사업장 현황


○○사는 혼합C4를 원료로 사용하여 1,3-부타디엔 유기화학 제품을 생산하는 사업장이다.

01 시설현황

1) 1,3-부타디엔 제조공정

1,3-부타디엔 제조공정은 에틸렌 공장에서 생산된 혼합C4 중 1,3-부타디엔을 제품으로 분리하는 공정으로 1차 추출증류 공정, 2차 추출증류 공정, 1,3-부타디엔 정제 공정, 용매 정제 공정으로 구성되어 있다.

FEED인 혼합C4는 1,2 단계 추출증류 및 1,3-부타디엔 정제 공정을 통해 연속 처리되며, 추출용 매로서 DMF(Dimethyl Formamide)를 사용한다.

[그림 2] 1,3-부타디엔 제조공정 Process 개략도

• 1.3-부타디엔보다 DMF에 잘 용해되지 않는 성분인 부탄 및 부텐류를 함유한 C4 Raff- I 과 DMF에 잘 용해되는 아세틸렌류와 1.3-부타디엔 등을 함유한 H.C으로 분리된다. 분리된 BD와 아세틸렌류 등은 가스 압축기를 통해 제 2단계 추출증류공정으로 공급된다.

3) 제2단계 추출증류 공정(2nd Extractive Distillation Section)

• DMF에 잘 용해되는 성분들을 Off Gas System으로 완전히 제거함으로써 가장 경제적으로 운전할 수 있으며 2단계 추출증류 공정에서 제거되지 않은 나머지 성분들은 1.3-부타디엔 정제 공정으로 보낸다.

4) 1.3-부타디엔 정제 공정(Butadiene Fractionation Section)

• 혼합C4 중 대부분의 불순물들은 1.2단계 추출증류 공정을 거치면서 제거되지만 용매 존재 하에 1.3-부타디엔에 대한 상대휘발도가 거의 1.0에 가까운 약간의 불순물들은 아직도 남아있다. Crude 1.3-부타디엔에 포함된 물은 1st 정류탑에서 제거된다.

5) 용매 정제 공정(Solvent Purification Section)

• 1,2단계 추출증류 공정에서 연속적으로 순환하는 용매의 일부를 본 공정으로 공급하여 정제한 뒤 용매 펌프의 Seal Fluid로 공급하거나 다시 용매 순환라인으로 보낸다. 도입되는 용매는 용매 에 포함되어 있는 불순물에 따라서 Tar 등의 고비점 물질 제거 설비를 거치거나, 물, Carbonyl 및 Dimer 등의 저비점물질 제거 설비를 거치게 된다.

02 사고 발생 물질

1) 1,3-부타디엔(혼합C4 중 대표 물질로 명시)

물질명	폭발범위	인화점	발화점	증기압	비중
1,3-부타디엔 (106-99-0)	1.1~16.3 %	-76 ℃	414 ℃	2,110 mmHg (25 ℃)	0.6

※ 경고표지 그림문자 ※

고압가스

발암성·변이원성·호흡기 과민성 물질

- 반응성이 강하고 산화되기 쉬운 극인화성 기체

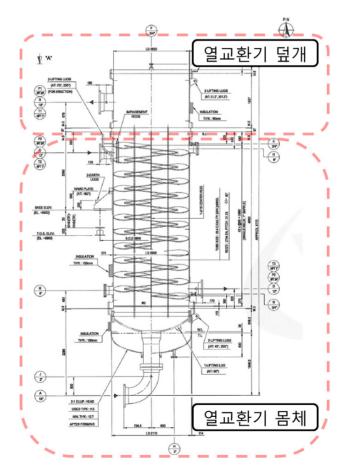
2) DMF(N,N-Dimethyl Formamide)

물질명	폭발범위	인화점	발화점	증기압	비중
DMF (68-12-2)	2.2~15.2 %	58 ℃	445 ℃	3.87 mmHg (25 ℃)	0.95

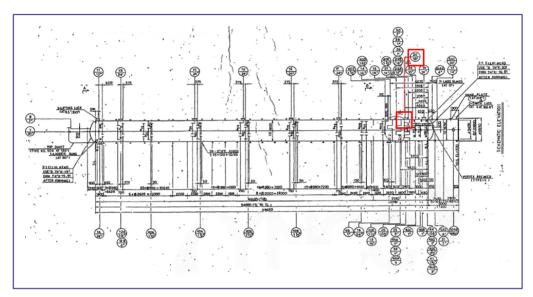
※ 경고표지 그림문자※

인화성 가스

급성 독성


발암성·변이원성·호흡기 과민성 물질

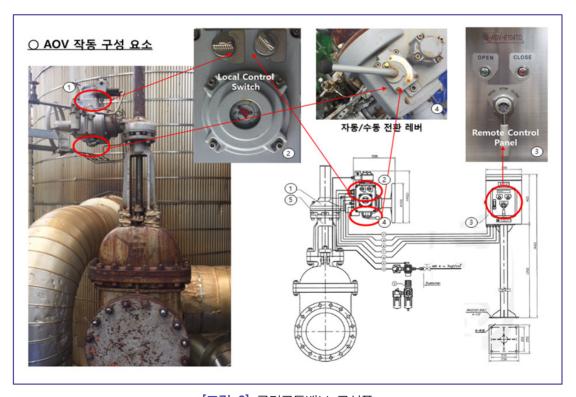
- 흡입하면 유독함


03 사고 발생 설비

명세		압력(kg/cm²)			온도	ul¬	
명칭	(mm)	운	전	설계	운전	설계	비고
열교환기	D 2,000	Shell	6.8	9.7	163.0 /126.5	200	
(HE-100A)	H 8,770	Tube	5.1	9.0	110.7 /90.6	170	_

[그림 3] 열교환기 설비 도면

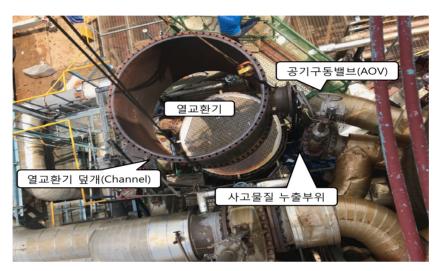
rd ÷1	명칭 명세		압력(kg/cm²)		온도(℃)		
명성	(mm)	운전	설계	운전	설계	비고	
증류탑 (DT-100)	D 3,600 H 54,650	5.5	7.5/F.V	135	170	-	


[그림 4] 증류탑 설비 도면

					ZLE LIST		
NOZZLE	NO REQT	NOM SIZE	SCH NO	FLANGE RATING .	SERVICE	REMARKS	PROJECTION
1A~H	В	24*	113	ANSI 1504 W.N.R.F.	MANHOLE .	. p 1150	2100
7	1	20"	1 13		YAPOR OUTLET	₱97Q·	SEE DNG
В	1	3*	160		VENT W/B F	† 180	SEE DWG
11	1	12*	60		FED FROM /B	Ø 610	2050
12 A	2	10	89		FEED FROM	Ø300∙ Ø510	SEE ORIENT
14	1		113		G-EA103	Ф780	2050
15	1	18	13		G-FATO3	¢ 870 "	2070
17 .	1	12"	60		TO G-FAYO3	· Ф610	2050
19	1	16*	t 13		G-E4104	Ф900	2050
20	1	18"	113		G-EA104	¢870	2070
21		14	43		G-EATOSA/B	Ф680	2050 .

[그림 5] 증류탑 노즐리스트

명칭	명세	구성품	비고
		① 구동기 (actuator)	공기모터, 감속기 등으로 구성
	Valve Size : 18인치	② LCS (local control switch)	구동기에 측면 부착 Local/Remote 선택스위치 부착 Open/ Stop/ Close 선택스위치 부착
공기구동밸브 (AOV-100) 구동용	구동용공기압력	③ RCP (remote control panel)	공기구동밸브로부터 약 5 m 아래층에 위치 Open/Stop/Close 선택스위치 부착
	: 4 ~ 7 kgf/cm ²	④ 클러치 (수동/자동 전환)	구동기 하부에 부착 수동:구동기 핸드휠로 조작 자동: LCS 또는 RCP에서 조작
		⑤ 밸브	게이트밸브


※ 구동밸브 연식 : 2013년 3월 설치

[그림 6] 공기구동밸브 구성품

1) 설비 정비 목적 - 열교환기 클리닝 후 공기구동 밸브와 열교환기 덮개 연결 작업

• 1,3-부타디엔 공장 1차 추출탑 열교환기 클리닝 작업 후 열교환기 덮개 재조립 작업을 위해 공기구동밸브 플랜지의 블라인드를 제거하고 연결 작업을 진행 중이었다.

[사진 1] 열교환기와 공기구동밸브

[사진 2] 공기구동밸브 구동부

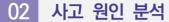
04 공정

1) 사고발생 공정 세부 공정흐름도

[그림 7] 증류탑(DT-100)과 열교환기(HE-100A) 공정 흐름도

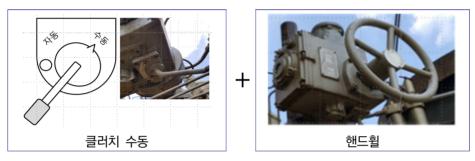
2) 열교환기(HE-100A) 공정 설명

• 1차 추출 증류 탑인 DT-100은 원료(혼합C4) 내 1,3-부타디엔, 아세틸렌류를 분리하기 위해 추출용매로 DMF를 사용하여, 온도 132 °C, 압력 5.5 kg/cm²로 운전한다. 증류탑과 연결된 열교환기 HE-100A, 100B는 약 4개월 마다 교대(switch)로 1대는 정상 운전을 하고 1대는 세척 작업을 실시한다.

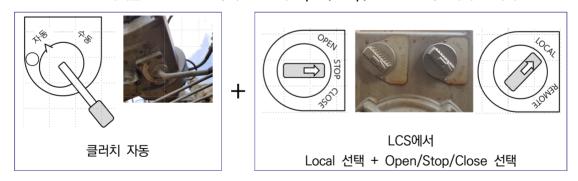

Ⅲ. 사고분석

01 사고 발생 과정

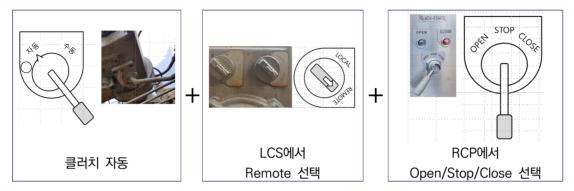
1) 작업 상황


일 시	작업 현황
6/4 ~ 6/15	• 열교환기의 혼합C4가스 및 DMF 제거를 위한 배출(drain), 퍼지(purge)를 실시함
6/15	• 재해발생 공기구동밸브(AOV-100)을 열교환기와 분리 후 맹판(blind)을 삽입함
6/15 ~ 6/18	• 열교환기 덮개(channel) 개방을 위한 물세척, 스팀 세척, 공기치환(air blowing) 작업을 실시함
6/18 ~ 8/10	• 열교환기 Tube Bundle 취외 후 공무동에서 세척(Jet cleaning) 실시함
8/16	• 열교환기에 세척이 완료된 Tube Bundle 장착 작업(set-up)을 시작함
8/17(금) 09:00	• 열교환기 덮개(Channel)의 노즐과 공기구동밸브(AOV-100)를 연결하기 위해 맹판 (Blind)을 제거함
10:53	• 덮개와 공기구동밸브 연결 작업 중 작업자가 덮개의 위치 조정을 위해 이동하다 공기구동밸브 구동기 부위를 잡고 배관 위로 올라갔다 내려온 직후 사고 발생
11:17	• 현장에서 공기구동밸브를 차단하여 누출이 중단됨

1) 공기구동밸브 조작 방법


• 공기구동밸브는 조정실에서 원격으로 조작할 수 없는 구조이며, 다음과 같은 3가지 방법으로 현장에서 만 조작할 수 있다.

Case 1 클러치를 수동으로 선택하고, 구동기에 부착된 핸드휠을 손으로 돌려 개폐


[그림 8] 수동 조작 방법

Case 2 클러치를 자동으로 선택하고, LCS(Local Control Switch)의 Local/Remote 선택 스위치를 Local로 선택 후 LCS의 Open/Stop/Close 선택스위치로 개폐

[그림 9] 자동 조작 방법 (현장 조작)

Case 3 클러치를 자동으로 선택하고, LCS의 Local/Remote 선택 스위치를 Remote로 선택 후 밸브에서 약 5 m 아래층에 위치한 RCP(Remote Control Panel)에서 Open/ Stop/Close 선택스위치로 개폐

[그림 10] 자동 조작 방법 (원격 조작)

2) 공기구동밸브 작동 원인

• 최초 공기구동밸브를 닫을 당시 각 스위치 상태는 작업자에 의하면 6월 15일 [Case 2]의 방법으로 공기구동밸브를 닫았으며, 밸브를 완전히 닫은 다음 클러치를 수동으로 선택했고, 공기구동밸브 구동 용 공기공급 밸브는 잠그지 않았다고 한다.

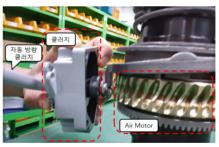
[사진 3] 열린 상태의 공기 공급밸브

[사진 4] 압력이 걸려있는 압력계(6kg/cm²)

• 사고 당시 공기구동밸브 각 스위치 상태는 클러치는 수동 위치(완전히 수동으로 선택되어 있지 않고 수동방향으로 약 4/5정도에 위치), LCS는 Local, RCP는 Stop로 선택되어 있었다.

• 클러치는 수동구간에 위치시킬 경우 안전핀이 체결되어 수동 위치에 고정되나. 재해 후 확인 시 안전핀이 체결되지 않은 상태로 수동구간을 약간 벗어난 지점에 위치한 점으로 보아, 6월 15일 클러치를 수동으로 선택 시 안전핀이 꽂히지 않은 불완전한 수동 상태였을 것으로 추정된다.

[사진 5] 불완전한 수동 상태의 클러치


• 공기구동밸브는 클러치를 수동으로 선택 후 안전핀이 체결된 경우 LCS나 RCP에서 자동으로 밸브를 조작할 수 없도록 제작되었으나. 금번 재해는 레버의 불완전한 수동 상태에서 공기구동밸브가 자동으 로 조작된 것으로 판단되었다. 이에 따라 공기구동밸브 제작 업체와 함께 불완전한 수동상태에서 공기 구동밸브가 조작 가능한지 확인을 진행하였다.

클러치측과 Air Motor 측 기어

클러치 불완전한 수동(반 클러치)

클러치 자동

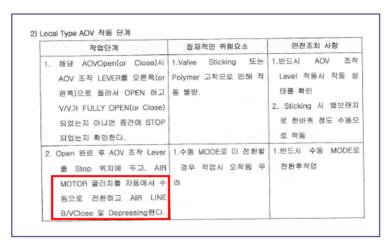
클러치 수동(완전 수동)

[사진 6] 공기구동밸브 동력 전달 테스트

• 작동 시험 결과 클러치에 안전핀이 꽂히지 않은 불완전한 수동상태일 경우에는 LCS에서 자동 조작이 가능함을 확인하였다.

3) 공기구동밸브 동작 원인

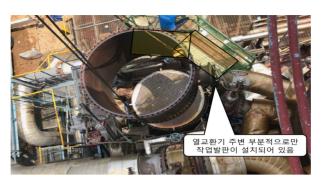
- ✓ 작업자의 LCS 선택스위치 오조작으로 인한 공기구동밸브 동작 여부 확인
- CCTV 확인 결과 작업자가 배관을 밟고 공기구동밸브 구동기 부분을 양손(왼손-LCS쪽, 오른손-LCS 반대쪽)으로 잡으며 배관 위로 올라갔다 내려온 후 누출이 발생하였다. 아래층에 있는 RCP 부근 에는 다른 작업자가 접근하지 않았다.
- CCTV에서 확인한 작업자의 동작을 현장에서 재현한 결과 구동기 부분을 양손으로 잡고 배관 위로 올라갈 경우 왼손이 LCS의 Open/Stop/Close 선택스위치 위에 위치하기가 어렵지 않았다.


[사진 7] 사고 당시 선택스위치 작동 가능성 재현

- 위의 확인 결과로 볼 때 사고 당시 클러치는 불완전한 수동, LCS의 Local/Remote는 Local로 선택된 상태에서, 작업자가 왼손으로 Stop 상태에 있던 Open/Stop/Close 선택스위치를 위로 당겨 공기구동밸브가 열렸을 것으로 판단된다.
- RCP에서 타 작업자 조작 가능성은 CCTV를 보면 사고 당시 RCP에 다른 작업자가 접근하지 않았으므 로 RCP에서 조작되었을 가능성은 없다.
- 공기구동밸브 오작동 가능성을 확인해본 결과 사고 발생 공기구동밸브는 솔레노이드밸브 등 전기기기 가 전혀 설치되지 않고 공기 공급/중단만으로 조작되며. 사고 후 작동시험에서 이상이 없었던 점 등을 고려할 때 공기구동밸브 자체 오작동 가능성은 적어 보인다.

4) 공기구동밸브 조작 절차서 준수 여부

- 공기구동밸브에 공기가 공급되는 경우 오조작 등에 의해 불시에 동작될 위험이 있으므로, 조작절 차서에 공기구동밸브의 자동 조작 완료 후에는 공기 공급 밸브를 차단하도록 명시되어 있다.
- 안전관찰자에 의하면 6월 15일 공기구동밸브를 닫고 맹판을 설치할 당시 공기 공급 밸브는 작그지 않았다고 한다.


[사진 8] 공기구동밸브 조작 완료 후 작업절차

5) 안전작업허가 적정성 여부

• 안전작업허가절차서에 작업 중 반드시 닫혀있어야 할 밸브, 작동 금지가 필요한 곳의 경우 위험꼬리표(TAG)를 부착하도록 되어 있으나 사고 발생 공기구동밸브(RCP 등 조작스위치 포함) 및 구동용 공기 공급밸브에 위험꼬리표가 부착되지 않았으며, 허가서 승인 과정 중에 이러한 안전조치 누락을 발견하지 못하였다.

6) 작업 공간 적정 여부

• 이동식 크레인을 이용하여 열교환기 덮개(channel)를 설치하는 경우 본체와 연결부 일치 확인 등을 위해 작업자가 이동이 필요하나, 작업발판 폭이 일부 좁고, 배관 상부에 작업발판 설치가 누락된 부분도 있어 작업 중 이동을 위해 배관을 밟고 올라서기가 쉬운 장소로 실제 작업 중 해당 작업 도중 배관을 밟고 작업을 진행하였다.

[사진 9] 작업자가 밟고 일어선 배관 및 주위 작업발판

6) 결론

• 금번 사고의 경우, 사고 발생 시간, 사고 발생 장소, 작업 내역 등을 검토한 결과 작업절차 미준수, 안전작업허가 확인 미흡, 작업 공간 부적정 등 여러 요인으로 인한 사고 발생으로 분석된다.

■ 사고근본원인분석(RCA; Root Cause Analysis)

• 사고 발생에 대한 직·간접 원인 등을 종합하면 공기구동밸브 차단 후 동력 차단 조치 미실시. 공기구동밸브 자동/수동 절체 레버 조작 후 안전핀 확인 미실시. 위험성평가 시 작업 중 누출 가능성 도출 미흡 등으로 인하여 사고가 발생한 것으로 판단된다.

단계	사고원인 1	사고원인 2
1. 결함내용 분류	작업결함	운전결함
2. 관련 조직	정비팀	생산팀
3. 결함 종류	설치,보수,예방보존문제	-
4. 결함 대분류	작업절차서	위험성평가
5. 결함 중분류	부적절하게 수행됨 불완전/틀린 절차서	평가결함
6. 결함 소분류	 공기구동밸브 차단 후 동력 차단 조치 미실시 공기구동밸브 자동/수동 절체 레버 조작 후 안전핀 확인 내용 절차서에 명시 되지 않음 	• 위험성평가 시 작업 중 누출 가능성 도출 미흡

Ⅳ. 사고발생 원인

원인 1 / 공기구동밸브 구동원 미차단

• 공기구동밸브를 닫은 후 오조작에 의해 공기구동밸브가 불시에 열려 위험물이 누출되지 않도록 공기구동밸브의 구동원인 공기 공급 밸브를 차단여야 하나 공기 공급밸브 차단 조치를 하지 않았다.

원인 2 / 공기구동밸브 조작 절차 미준수

• 조작절차서에 공기구동밸브 조작 후 반드시 클러치를 수동으로 전환하도록 되어 있으며, 수동이 선택되기 위해서는 안전핀이 결속되어야 하나 안전핀 결속 여부를 확인하지 않았다.

원인 3 / 작업발판 설치 미흡

• 열교환기 덮개와 본체의 연결부 일치 확인 작업 중 작업자가 반대편을 보려고 배관 위로 올라가기 위해 공기구동밸브 조작스위치(LCS)를 잡고 일어서다 스위치를 열림 방향으로 동작하였다.

원인 4 / 안전작업허가서 운영 미흡

• 작업 중 반드시 닫혀있어야 할 밸브 등 작동금지가 필요한 곳의 경우 LOTO(Lock Out Tag Out)처리하도록 되어 있으나 사고 발생 공기구동밸브(RCP등 조작스위치 포함) 및 구동용 공기 공급밸브는 LOTO 처리가 되어 있지 않았고. 허가서 승인 과정 중에 이러한 안전조치 누락을 발견하지 못하였다.

V. 동종사고 예방대책

♥ 대책 1 _/ 공기구동밸브 구동원 차단

• 공기구동밸브와 같은 구동원에 의해 조작되는 밸브는 조작 후 불시 작동을 방지하기 위해 반드시 구동원을 차단하고, 위험꼬리표를 부착하여 다른 작업자의 오조작을 방지하여야 한다.

대책 2 / 공기구동밸브 조작 절차 준수

• 클러치 수동 선택 시 안전핀 결속 여부를 반드시 확인하도록 절차서에 추가하고, 절차서의 내용이 현장에서 준수될 수 있도록 현장 확인이 필요하다.

대책 3 / 작업에 적합한 작업발판 설치

• 정비작업 시 작업에 필요한 작업자의 이동 경로, 장애물, 설비 간섭 등을 고려한 작업발판을 설치 하여 작업자가 현장 조작스위치 등을 잡고 이동하는 경우가 발생하지 않도록 조치가 필요하다.

대책 4 / 안전작업허가서 확인 철저

• 현재 안전작업허가서 지침에는 밸브 구동원에 대한 불시동작 방지조치가 명확하게 표기되어 있지 않으므로. 회전기기 등 다른 동력기계와 동일하게 LOTO 조치하도록 명기하고, 작업허가서 승인 과정 중에는 이러한 현장 안전조치 내용의 철저한 확인이 필요하다.

♥ 대책 5 _/ 구동밸브 조작 스위치 커버 설치

• 구동밸브 조작스위치를 필요 시에만 조작이 가능하도록 스위치 커버를 설치하여 의도하지 않는 조작이 이루어지지 않도록 조치하여야 한다.

VI. 사고로부터 얻은 교훈

공기구동밸브 오조작으로 인한 혼합C4 누출사고로 얻은 교훈은 다음과 같다.

교훈 1 / 기기의 조작 방법을 정확히 알아야 한다.

- 이번 사고는 공기구동밸브의 조작 방법을 정확히 숙지하지 못하여 발생한 사고로 세 번에 걸친 공기구동밸브 조작 중에 한 차례라도 정확한 조작이 이루어졌으면 발생하지 않았을 사고이다.
- 첫 번째는 동력원 차단이 이루어지지 않았고, 두 번째로 자동/수동 레버 절체 부적정. 마지막으로 구동부를 오조작하여 물질이 누출되었다. 이런 내용을 볼 때 기기의 정확한 조작방법은 공정운전 및 사고예방에 반드시 필요한 부분임을 알 수 있다.
- 공기구동밸브의 조작방법은 기기업체의 카탈로그에 정확히 명시되어 있으므로, 공기구동밸브 구매 시 해당 담당자들을 대상으로 정확한 교육이 이루어지고, 해당 기기 관련 작업이 있을 경우 추가적인 교육이 이루어져야 한다.

교훈 2 / 절차준수는 필수사항이다.

- 절차서는 조작방법 및 관련 사고사례를 취합하여 위험성평가를 통해 도출된 결과를 토대로 내용 을 작성하게 된다.
- 내용 중에는 과거의 동일한 사고 내용이 반영되어 있었지만. 절차서 내용을 준수하지 않아 동일한 사고가 발생하게 되었다.
- 최근 들어 사업장마다 많은 인원들이 교체되는 시점에 있다. 이러한 시점에서 절차서 내용을 숙지 및 준수하지 않게 되면 큰 사고로 이어질 가능성이 다분하다. 절차서는 현재까지의 경험과 내용을 절차서에 반영하였기 때문에 절차서의 작성 의도를 파악하고 교육하여 동일한 사고를 예방해야 한다.

교훈 3 / 안전작업허가는 현장에서!

- 안전작업허가서 허가 시 확인할 내용은 단순한 허가서 작성의 적정성을 판단하는 차원에서 마무 리 할 것이 아니라 필요한 경우 승인권자가 현장을 방문하여 허가서에 있는 내용이 제대로 준수 되었는지를 확인하여야 한다.
- 사업장의 담당자는 안전작업허가서가 형식적인 업무가 되지 않도록 관련 사항을 지속적으로 체크 하고 내용을 업데이트하여 현장 맞춤형 작업허가서가 될 수 있도록 노력해 나가야 한다.

Ⅶ. 유사 사고사례

모터구동밸브 오조작으로 인한 급냉오일 누출 및 화재사고

발생일시	2006년 1월
사고장소	전남 소재 공장
피해내용	부상자 3명(화상) 설비 주변 전소
사고내용	• 가솔린분리탑 하부 급냉오일 순환펌프 전단의 필터 스크린 교체작업을 위해 에어호이 스트를 이용하여 권상작업 중, 잠겨있던 전기구동밸브 작동스위치를 건드려 밸브가 개방되고 가솔린분리기 하부에 있던 급냉오일이 약 7~8톤 정도 누출되고, 조치 중이 던 근로자 3명이 경화상을 입었으며 공장 가동중단 후 누출 오일을 수거하는 과정에 보온재에 침투된 오일이 자연발화를 일으켜 화재 발생

레벨컨트롤밸브 오조작으로 인한 스팀 누출사고

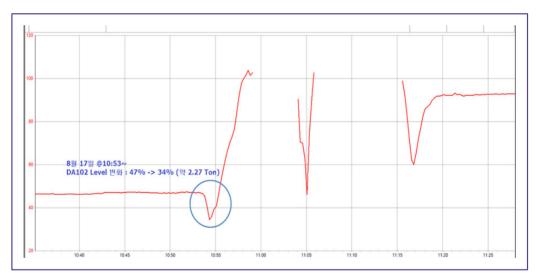
발생일시	2009년 5월
사고장소	울산 소재 공장
피해내용	사망 1명, 부상 1명(화상)
사고내용	• SBR공정에서 작업자 3명이 Leach Tank 내부에 들어가 임펠러 제거 작업 중 Control Room 운전자의 밸브 오조작으로 탱크 내부로 스팀이 공급되면서 작업 중 인 작업자 1명은 사망하고, 1명은 부상을 입은 재해가 발생

03 자동밸브 오조작으로 인한 스팀 누출사고

발생일시	2017년 8월
사고장소	충남 소재 공장
피해내용	사망 1명, 부상 1명(화상)
사고내용	• 배합실에서 세척한 SUS배관을 탱크하부 배관 재조립하던 중에, 2층으로 올라간 동료 작업자가 조작판넬에서 「Valve Open」버튼을 눌러 탱크 하부의 자동밸브가 열리 면서 배관살균용 고온수가 배관이음부 사이로 쏟아지면서 화상을 입고 치료 중 사망 하는 재해가 발생

Ⅷ. 참고자료

- 1. 산업안전보건법, 고용노동부; 2018
- 2. 산업안전보건용어사전, 한국산업안전보건공단; 2006
- 3. 중대산업사고 조사의견서, 한국산업안전보건공단; 2010~2017
- 4. KOSHA Guide P-151-2016 사고의 근본원인 분석기법에 관한 기술지침


IX. 부록

1) 사고물질 누출량 확인

• 누출된 물질 추정량은 증류탑(DT-100)의 유량 변화가 47.1 % → 34 %로 변화하였고, 증류탑 의 내경 3600 mm을 고려하였을 경우 누출 부피는 2.91 m³가 누출되어 유체 비중(0.781)을 적용하면 대략 2.27 Ton이상의 혼합C4 및 DMF가 누출되었음을 확인 할 수 있다.

$$\frac{\pi}{4}$$
 * (3.6m)^2*(13*0.022m) = 2.91m³

[그림 11] 사고 당시 증류탑 레벨 변화 트렌드

작 성

강 성 광 (안전보건공단 전남동부지사 화학사고예방센터(여수)) 오 상 규 (안전보건공단 전남동부지사 화학사고예방센터(여수)) 김 우 종 (안전보건공단 전남동부지사 화학사고예방센터(여수))

검 토

권 혁 면 (연세대학교 산학협력단)

윤 동 현 (윤테크)

주 종 대 (산업안전환경기술원)

권 현 길 (안전보건공단 교육원)

안전보건공단 전문기술실 전문기술부

2019-전문기술-304

『구동밸브 오조작으로 인한 혼합C4 누출사고』 사례 연구

발 행 일 2019년 7월 1일

발 행 인 한국산업안전보건공단 이사장 박두용

발 행 처 한국산업안전보건공단 전문기술실

주 소 울산광역시 중구 종가로 400

전 화 (052) 703-0600

F A X (052) 703-0312

Homepage http://www.kosha.or.kr

디 자 인 · 인 쇄 (사)한국신체장애인복지회 ☎ 02.6401.8891

※무단 복사 및 복제하여 사용하는 것을 금지함

혼합C4 누출 사고사례(2018.8.17.)

본 사례는 국내에서 발생한 화학사고에 대하여 안전보건공단에서 동종사고의 재발방지를 위하여 관련 사업장에 무료로 배포하오니 근로자에게 충분히 교육하여 동종사고가 발생하지 않도록 만전을 기하여 주시기 바랍니다.

구동밸브 오조작으로 인한 혼합C4 누출사고

사고개요

20년 8월 17일(금) OO사 1,3-부타디엔 공장에서 열교환기 세척 후 크레인으로 열교환기 덮개를 설치하던 중 증류탑의 구동밸브 조작기 오조작으로 밸브가 열려 증류탑 내부의 혼합C4 및 추출용 매가 누출된 사고임

[그림 1] 사고물질 누출모습

[그림 2] 사고발생 후 근접사진

01 사고발생공정 및 물질

• 사업장내 1,3 부타디엔 제조공정 중 1차 추출 공정 열교환기 클리닝 작업 후 열교환기 덮개 정상화 작업 중 구동밸브 오조작으로 인해 혼합C4 누출.

원료투입 → <mark>1차 추출증류</mark> → 2차 추출증류 → 1,3-부타디엔 → 용매 ※사고발생공정 → 2차 추출증류 → 정제공정 → 정제공정

사고발생물질

물질명	CAS No.	성상	인화점	폭발범위	발회점	노출기준
혼합C4	106-99-0 115-11-7 106-98-9 106-97-8 590-18-1 624-64-6	가스	인화성 가스	1.4 % ~ 11.7 %	365	TWA 10 ppm
DMF (용매)	68-12-2	액체	58	2.2 % ~ 15.2 %	445	TWA 2 ppm STEL 10 ppm

02 사고발생원인

• 구동밸브 구동원 미차단

- 구동밸브를 닫은 후 오조작으로 인해 구동밸브가 불시에 열려 위험물이 누출되지 않도록 구동밸브 구동원인 공기 공급 밸브를 차단하여야 하나 미실시함

• 구동밸브 조작 절차 미준수

- 조작절차서에 구동밸브 조작 후 반드시 클러치를 수동으로 전환하도록 되어 있으며, 수동이 선택되기 위해 서는 안전핀이 결속되어야 하나 안전핀 결속 여부를 확인하지 않음

• 작업발판 설치 미흡

- 열교환기 덮개와 본체의 연결부 일치 확인 작업 중 작업자가 반대편을 보려고 배관 위로 올라가기 위해 구동밸브 조작스위치를 잡고 일어서다 스위치를 Open 방향으로 동작시킴

• 안전작업허가서 운영 미흡

- 작업 중 반드시 닫혀있어야 할 밸브, 작동금지가 필요한 곳의 경우 LOTO(Lock Out Tag Out)처리하도록 되어 있으나 사고 발생 구동밸브(RCP등 조작스위치 포함) 및 구동용 공기 공급밸브는 LOTO 처리가 되어 있지 않았고. 허가서 승인 과정 중에 이러한 안전조치 누락을 발견하지 못함

03 동종사고 예방대책

• 구동밸브 구동원 차단

- 구동밸브와 같은 구동원에 의해 조작되는 밸브는 조작 후 불시 작동을 방지하기 위해 반드시 구동원을 차단하고, 위험꼬리표를 부착하여 다른 작업자의 오조작을 방지하여야 함

• 구동밸브 조작 절차 준수

- 수동 선택 시 안전핀 결속 여부를 확인하도록 절차서에 추가하고, 절차서의 내용이 현장에서 준수

• 작업에 적합한 작업발판 설치

- 정비작업 시 작업에 필요한 작업자의 이동 경로, 장애물 간섭 등을 고려한 작업발판을 설치하여 작업자가 현장 조작스위치 등을 잡고 이동하는 경우가 발생하지 않도록 조치

• 안전작업허가서 확인 철저

- 안전작업허가서 지침에는 밸브 구동원에 대한 불시동작 방지조치가 명확하게 표기되어 있지 않으므로, 회전 기기 등 다른 동력기계와 동일하게 LOTO 조치하도록 명기하고 작업허가서 승인 과정 중에는 이러한 현장 안전조치 내용의 철저한 확인

• 구동밸브 조작 스위치 커버 설치

- 구동밸브 조작스위치를 필요시에만 조작이 가능하도록 스위치 커버를 설치하여 의도하지 않는 조작이 이루 어지지 않도록 조치