밀폐공간작업

질식재해예방 매뉴얼

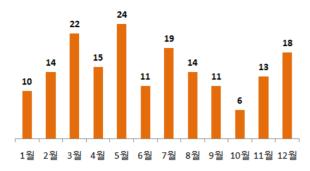
목 차

I. 질식재해 발생현황 및 특징 (1) 질식재해 발생현황 (2) 질식재해 발생특징	1
 Ⅱ. 밀폐공간 (1) 밀폐공간이란? (2) 질식이란? (3) 어떤 조건에서 산소농도가 낮아질 수 있을까요? (4) 밀폐공간에서의 건강장해 	3
 Ⅲ. 밀폐공간의 파악과 관리 (1) 밀폐공간의 파악 (2) 밀폐공간 표시 (3) 보호장구 구비 (4) 교육·훈련 	8
Ⅳ. 밀폐공간작업 허가(1) 밀폐공간 사전조사(2) 밀폐공간작업 허가(3) 밀폐공간작업 허가서 게시	11
 V. 밀폐공간작업시 조치기준 (1) 산소 및 유해가스 농도측정 (2) 환기 (3) 보호장구의 사용 (4) 유해가스 발생장소 조치 (5) 작업관리 	14
V. 재해자 구조와 심폐소생술	25
(부록) 밀폐공간 질식재해 사례	27

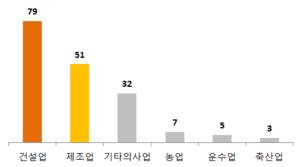
질식재해 발생현황 및 특징

1 질식재해 발생현황

♪ 최근 5년간('10~'14년) 밀폐공간 질식재해로 177명이 부상을 입거나 사망하였으며, 매년 재해자가 증가하고 있습니다.


2 질식재해 발생특징

▶ 다른 사고보다 사망으로 이어질 가능성이 매우 높습니다.

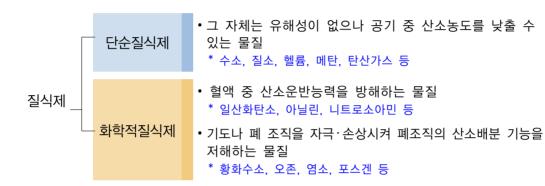

- ▶ 사고발생시 2명 이상이 동시에 사망할 가능성이 높습니다.
 - 한명의 근로자가 쓰러지면 적절한 보호장비 없이 밀폐공간으로 들어가다 구조
 자도 함께 사망하는 경우가 다수 발생

계절적으로 큰 차이 없이 수시로 발생합니다.

- 다만, 일부 작업의 경우 특정 시기에 집중 발생
 - 겨울철: 콘크리트 양생작업
 - 여름철: 축산분뇨 처리작업, 맨홀작업, 오폐수처리시설 보수작업 등

● 건설업과 제조업에서 다발하고 있습니다.

- □ 건설업이 전체 44.6%를 차지하여 질식재해 발생률이 가장 높고, 제조업, 기타의사업 순으로 발생
 - 건설업: 콘크리트 양생작업, 방수도장 등
 - 제조업: 탱크 내부에서의 용접, 청소, 보수작업 등


1 밀폐공간이란?

- ▶ 밀폐공간이란 환기가 불충분한 상태에서 ①산소결핍이나 유해가스로 인한 건강장해 또는 ②인화성물질에 의한 화재·폭발 등의 위험이 있는 장소를 말합니다.
 - ☞ 산소결핍이란 산소농도가 18% 미만인 상태를 말합니다.
 - □폐공간은 반드시 산소결핍 상태이거나 유해가스로 차 있는 상태만을 의미하지 않습니다. 근로자가 상시 거주하지 않는 공간이면서 환기가 불충분하여 유해가스, 불활성기체가 존재하거나 유입될 가능성이 있는 공간도 밀폐공간으로 분류하고 관리해야 합니다.

2 > 질식이란?

- 질식은 우리 몸에 정상적으로 산소가 공급되지 않는 상태를 말합니다.
- 이러한 질식은 산소농도가 낮은(18% 미만) 장소에서 주로 나타나지만 산소 농도가 정상범위(18~23.5%)라 하더라도 연탄가스처럼 혈액 중 산소운반을 저해할 수 있는 가스가 있는 경우에도 질식은 일어날 수 있습니다.

3 〉 산소결핍이나 유해가스가 발생하는 이유는?

물질의 산화작용

- 저장용 탱크 소재의 산화, 저장 또는 운반물질이 산화되면 공기 중의 산소가 빠르게 감소되므로 질식이 일어날 수 있습니다.
 - O 저장용 탱크 소재의 산화

철재 탱크 내에 물기가 있거나 장기간 밀폐되면 내벽이 산화되어 생긴 녹이 탱크내의 산소를 감소시키므로 산소결핍 상태가 됩니다.

- → 강재의 보일러, 탱크 반응탑, 압력용기, 가스홀더, 반응기, 추출기, 분리기, 열교환기, 선창, 선박의 이중저 등 내부
 - O 저장 또는 운반물질의 산화

석탄, 강재, 고철 등은 상온에서도 공기 중의 산소를 소비합니다.

➡ 석탄, 강재, 고철 등을 담은 탱크, 호퍼, 사일로, 유개화차 등의 내부

O 건성유의 산패

아마유, 보일(Boil)유 등의 도료용 건성유는 건조, 경화될 때 다량의 산소를 소비하며, 대두유, 유채유와 같은 불포화 지방산을 함유한 식물성 식용유는 공기 중의 산소와 결합하여 고화, 변질될 수 있습니다.

▶ 건성유를 사용하여 도장한 환기가 불량한 장소. 식물성 기름저장탱크 등의 내부

치환용 가스의 사용

- 화재나 폭발 또는 설비보호를 위해 외부의 공기가 들어오지 못하도록 불활성가스를 채워둔 장소나 그 밖에 불활성가스를 사용하는 장소 에서는 질식재해의 위험이 있습니다.
 - O 화재·폭발예방을 위한 질소 등의 봉입
- ➡ 반응탑. 배관. 기타 설비보호 차원에서 질소를 채운 장소

O 질소, 이산화탄소 등의 이용

■ 질소치환을 실시하는 각종 저장탱크, 불활성가스를 이용한 아크용접·절단작업, 드라이아 이스를 사용하는 냉동고, 컨테이너

미생물의 호흡작용

- 미생물 증식, 유기물의 부패, 미생물의 발효 등의 과정에서 공기 중 산소를 소모하여 산소결핍 상태를 만들 수 있습니다.
- ▶ 정화조, 음식물쓰레기처리 탱크, 곡물을 담은 사일로, 항온실 등

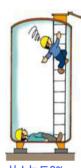
유해가스의 누출

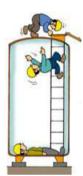
• 유해가스 배관이 연결되어 있는 공간에서 작업하는 경우 유해가스 누출시 작업공간을 산소결핍 상태를 만들 수 있습니다.

4 > 밀폐공간에서의 건강장해

- 산소결핍에 따른 건강장해
 - **산소농도가 18% 미만인 상태**에서는 **산소결핍증**이 나타날 수 있습니다.

산소농도18% 안전한계이나 연속환기 필요


산소농도16% 호흡, 맥박의 증가, 두통, 메스꺼움, 토할 것 같음


산소농도12% 어지럼증, 토할 것 같음, 체중지지 불능으로 추락

산소농도10% 안면창백, 의식불명, 구토

산소농도8% 실신혼절, 7∼8분 이내에 사망

산소농도6% 순간에 혼절, 호흡정지, 경련, 6분 이상이면 사망

- △ 산소농도가 16% 이하로 저하된 공기를 마시게 되면 인체의 각 조직에 산소가 부족하게 되어 맥박과 호흡이 빨라지고 구토, 두통 등의 증상이 나타나게 되며, 10% 이하가 되면 의식상실, 경련, 맥박수가 감소하게 되어 질식 사망하게 됩니다.
- ▲ 호흡정지 시간이 6분 이상이 되면 소생 가망이 없게 됩니다. 소생한계 내에서 구조된 경우 후유증으로 언어 장해, 운동장해, 시야협착, 환각, 건망증, 성격이상 등이 남을 수 있습니다. 산소농도가 10% 이하가 되면 의식 상실, 경련, 혈압강화 등과 함께 맥박수가 감소하게 되어 질식 사망하게 됩니다.

▲ 산소결핍 장소에 들어가도 정신만 차리면 된다? 대개의 경우 산소결핍 상황을 모른 채 밀폐공간에 들어갈 경우 순간적으로 폐내 산소분압이 떨어지면서 뇌의 활동이 정지되며 대부분 의식을 잃게 됩니다. 이러한 증상은 수초 이내에 나타나기 때문에 정신을 차릴 수 없습니다.

● 일산화탄소(CO) 농도와 인체영향

농도(ppm)	건강영향	노출시간
30	8시간 작업시 노출기준	8시간
200	가벼운 두통과 불쾌감	3시간
600	두통, 불쾌감	1시간
	정신혼란, 메스꺼움, 두통	2시간
100~2,000	현기증	1.5시간
	심계항진(두근거림)	30분
2,000~2,500	의식불명	30분

● 황화수소(H₂S) 농도와 인체영향

농도(ppm)	건강영향	노출시간
10	8시간 작업시 노출기준	8시간
50~100	가벼운 자극(눈, 기도)	3시간
200~300	상당한 자극	1시간
500~700	의식불명, 사망	30~1시간
\)1,000	의식불명, 사망	수분

▶ 그 밖에 밀폐공간에서 질식재해를 일으킬 수 있는 유해가스

유해가스	주된 위험	외관 및 냄새
아르곤(Ar)	• 산소 치환 • 바닥에 축적 가능	무색, 무취
이산화탄소(CO2)	산소 치환유독성바닥에 축적 가능	무색, 무취
휘발유증기	• 화재와 폭발 • 바닥에 축적 가능	무색, 달콤한 냄새
염소(Cl ₂)	• 유독성 - 폐와 눈 자극 • 바닥에 축적 가능	녹황색, 톡 쏘는 냄새
메탄(CH ₄)	• 화재와 폭발 • 상부에 축적 가능	무색, 무취(징후 없음)
질소가스(N₂)	• 산소 치환	무색, 무취(징후 없음)
이산화질소(NO2)	• 유독성 - 폐에 심한 자극 • 바닥에 축적 가능	적갈색, 쏘는 냄새
이산화황(SO ₂)	• 유독성 - 폐에 심한 자극 • 바닥에 축적 가능	무색, 썩은 냄새

밀폐공간의 파악과 관리

1 밀폐공간의 파악

- ♪ 가장 중요한 것은 우리 사업장내 밀폐공간이 어디가 있는지를 파악하고 이를 목록화하는 것입니다.
 - ☞ 대부분의 밀폐공간 질식사고는 작업자 자신이 들어가는 공간이 유해가스가 들어있는 밀폐공간, 질소 등 불활성기체가 누출·유입되어 산소가 부족한 공간 이라는 사실을 몰랐고 따라서 필요한 예방조치를 취하지 않았기 때문입니다.
 - □폐공간은 반드시 현재 상태가 산소결핍 상태이거나 유해가스로 차 있는 장소만을 의미하지 않습니다. 근로자가 상시 거주하지 않는 공간이면서 유해가스, 불활성 기체가 존재하거나 유입될 가능성이 있는 공간도 밀폐공간으로 분류하고 관리를 해야 합니다.

여번	공정명		작업장소	작업내용	작업주기	·기 담당부서
신인	500	명칭	특이사항	역합대공	(작업빈도)	(관리책임자)
1			내부면적 및 환경조건, 유해가스의 종류 등			
2						
:						

2 > 밀폐공간 표시

▶ 파악된 밀폐공간에는 근로자가 잘 볼 수 있는 곳에 밀폐공간임을 표시하고 위험을 경고하여야 합니다.

(밀폐공간 경고표시 예)

3 보호장구의 구비

▶ 밀폐공간작업을 하게 되는 부서나 팀별로 산소농도측정기, 공기호흡기, 무전기 등을 구비하여야 합니다.

분야	장비명	사용용도	사진(예)
산소 및 유해가스	산소농도 측정기	산소농도 측정	
농도 측정	혼합가스농도 측정기	산소·황화수소·일산화탄소·가연성 가스(메탄) 농도 측정	
환기	공기치환용 환기팬	밀폐공간내를 신선한 외부공기로 치환	who were
호흡용	공기호흡기	밀폐공간내 재해자 구조 시 사용하거나, 환기가 어려운 장소 또는 작업 중에	
보호구	송기마스크 (에어라인 마스크)	유해가스 발생으로 질식위험이 있을 경우에 사용	
출입통제	관계자외 출입 금지 표지판	밀폐공간작업 장소에서의 작업자 외 출입 통제	관계자외 출입금지 - GRUST MESTA
기타 안전장비	무전기	감시자와 밀폐공간내 작업자와의 상호연락	
	휴대용 랜턴	조명확보	50
	안전대·구명밧줄	재해자 구조용	
	구조용삼각대·윈치	재해자 구조용	

[☞] 일반적으로 밀폐공간은 공간이 협소하고 재해자가 의식이 없는 경우가 대부분이어서 재해자를 구출하기가 쉽지 않습니다. 구조용 삼각대, 윈치 등은 재해자 발생 시 신속 하고 안전하게 구출할 수 있도록 도와줍니다.

4 > 교육·훈련

- ▶ 밀폐공간작업을 하는 근로자를 대상으로 특별안전보건교육을 실시하여야 합니다.
 - O 밀폐공간작업 관련 특별안전보건교육 내용(산업안전보건법 시행규칙 별표 8의2)
 - 산소농도 측정 및 작업환경에 관한 사항
 - 사고 시의 응급처치 및 비상 시 구출에 관한 사항
 - 보호구 착용 및 사용방법에 관한 사항
 - 밀폐공간작업의 안전작업방법에 관한 사항
 - 그 밖에 안전·보건관리에 필요한 사항
- 아울러 긴급상황 발생 시 대응할 수 있도록 비상 연락체계 운영, 구조용 장비의 사용, 송기마스크 등의 착용, 응급처치에 관하여 **6월에 1회 이상** 주기적으로 훈련을 실시토록 해야 합니다.(산업안전보건기준에 관한 규칙 제 640조)

● 위와 같은 교육·훈련은 실제 밀폐공간작업을 하는 근로자만을 대상으로 하는 것이 아니라 **밀폐공간을 보유한 사업장 전체 근로자를 대상**으로 하는 것이 바람직합니다. 이는 밀폐공간에서의 위험상황을 목격했을 때 훌륭한 협조자가 될 수 있기 때문입니다.

밀폐공간작업 허가

밀폐공간작업시 산소농도 측정, 환기 등의 안전보건조치가 제대로 이뤄지지 않은 상태에서 작업을 하게 될 경우 질식사고 등 위험 가능성이 높습니다. 이에 대한 대책으로 사전조사 및 **밀폐공간작업 허가제도**를 마련하는 것이 중요합니다.

1 사전조사

- ▶ 밀폐공간 작업을 하기 전에 반드시 사전조사를 통해 밀폐공간 내 공기상태를 측정하여 적정 여부를 확인해야 하며
 - 산소농도가 낮거나 유해가스가 존재하는 경우 충분히 환기를 실시하여 안전한 공기상태로 만들어야 합니다.

- △ 밀폐공간 내부를 살펴보기 위해 근로자의 머리(호흡기)가 밀폐공간 개구면 안쪽으로 들어가는 것도 금해야 합니다. 밀폐공간에 유독가스가 차 있다면 개구면 근처에 가기만 해도 위험할 수 있습니다.
- △ 사전조사를 위해 공기(산소)측정기를 들고 밀폐공간 내로 들어가야 하는 경우 에는 먼저 충분히 환기를 실시하여야 합니다.
- ▶ 도면 등을 검토하여 질소 등 불활성기체나 유해가스의 유입을 방지하기 위해 사전에 차단해야 할 펌프나 배관 등이 있는지도 확인해야 합니다.
 - □ 밸브나 콕에는 맹판(차단판)을 설치하여야 하며 임의개방을 금지한다는 내용을 근로자가 보기 쉬운 장소에 게시하여야 합니다.

2 밀폐공간작업 허가

- 밀폐공간작업 근로자(관리감독자)는 사전조사 결과와 작업준비 사항을 허가권자(원청 또는 사업주)에게 검토 받아 작업허가서를 발급 받은 후 작업을 해야 합니다.
- ▶ 밀폐공간 작업허가 신청서에는 다음 사항이 기재되어야 하고 요건을 충족하여야 합니다.
 - O 작업개요: 작업위치, 작업기간, 작업내용, 작업책임자·감시인·투입근로자 정보
 - * 화기작업(용접, 용단 등)시 필요한 별도의 허가 취득 여부(화기작업허가 등) 확인
 - * 관련 근로자의 안전보건교육 및 훈련여부(특별안전보건교육 등) 확인
 - O 공기상태: 산소·독성가스·폭발성가스 등의 농도, 측정시간, 측정자(서명 포함)
 - * 최초 공기상태가 부적절할 경우 환기 실시 후 공기상태를 재측정하고 그 결과를 추가 기재
 - O 환기방법: 기계강제환기, 급·배기 방식 등
 - O 펌프나 각종 배관 등의 차단 상태 : 밀폐공간과 연결된 펌프나 배관의 차단여부
 - O 연락체계: 작업근로자와 외부 관리감독자(감시인) 사이에 상시 연락할 수 있는 체계
 - O 사고발생시 응급구조 체계
 - O 보유 장비: 가스검지기, 안전대, 생명줄, 인양장비, 통신수단, 호흡보호구, 조명 기구 등
- ▶ 밀폐공간작업 허가 유효기간은 최대 8시간으로 한정하는 것이 바람직합니다.
 - 밀폐공간 내에서 정상적으로 작업을 마쳤다 하더라도 그 다음날에는
 전혀 다른 조건이 될 수 있습니다.
 - ☞ 작업허가 기간 내라도 일정시간 밀폐공간을 떠나 있다가 다시 출입하는 경우 반드시 산소농도 측정 등 공기상태를 다시 확인하고 출입해야 합니다.

3 > 밀폐공간작업 허가서 게시

- ▶ 밀폐공간작업 허가서는 작업이 완료될 때까지 작업장소에 게시토록 해야 합니다.
 - ☞ 누구든지 작업허가서와 다른 상황을 발견할 경우 이를 관리책임자(허가권자) 에게 통보하도록 해야 합니다.
- ♪ 게시된 허가서에 일정시간(ex 2시간) 간격으로 공기상태를 측정하여 기록 토록 하고 작업이 종료(또는 허가기간이 만료)될 경우 허가서를 반납토록 합니다.
- 사업주는 반납된 허가서를 보존토록 하여야 합니다.
 - ※ 밀폐공간 보건작업 프로그램 수립·시행
 - O 사업주는 근로자가 별표 18(밀폐공간, 산업안전보건기준에 관한 규칙 제618조 제1조 관련)의 밀폐공간에서 작업을 하는 경우에는 밀폐공간 보건작업 프로 그램을 수립하여 시행하여야 합니다.
 - ☞ 반드시 조치하여야 할 사항
 - ① 작업시작전 공기 상태가 적정한지를 확인하기 위한 측정ㆍ평가
 - ② 응급조치 등 안전보건교육 및 훈련
 - ③ 공기호흡기나 송기마스크 드의 착용과 관리
 - ④ 그 밖에 밀폐공간 작업근로자의 건강장해 예방에 관한 사항

밀폐공간작업시 조치 기준

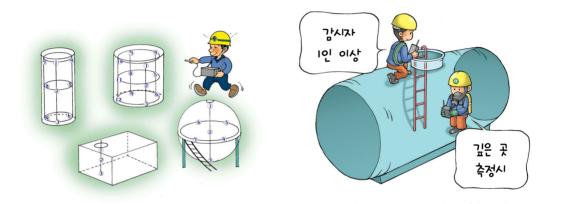
1 산소 및 유해가스 농도 측정

- - ☞ 산업안전보건기준에 관한 규칙(제643조)
 에서 산소농도측정은 관리감독자, 안전 관리자 또는 보건관리자, 안전관리대행기관
 또는 보건관리대행기관, 지정측정기관이 측정하도록 규정하고 있습니다.

- ▶ 밀폐공간에서 작업을 하기 전 산소 및 유해가스 농도를 측정하여 적정 공기인지 여부를 평가하여야 합니다.
 - ㅇ 적정공기

산소농도의 범위가 18% 이상 23.5% 미만, 탄산가스의 농도가 1.5% 미만, 황화수소의 농도가 10ppm 미만인 수준의 공기를 말합니다.(산업안전보건기준에 관한 규칙 제618조)

그 밖에 가연성가스의 농도가 하한치(Lower flammable limit, LFL)의 10%를 넘지 않는 경우와 독성가스의 농도가 허용기준 미만인 경우까지도 적정공기 기준으로 보기도 합니다.


- ㅇ 유해가스 농도의 측정시기
 - 밀폐공간작업을 위한 사전조사 시(허가 전)
 - 밀폐공간작업을 시작하기 전(허가 후)
 - 장시간 작업하는 경우 일정 시간 간격으로(ex 2시간)
 - 밀폐공간작업 중 전체 근로자가 작업장소를 떠났다가 돌아와 작업을 재개하기 전
 - 근로자의 신체. 환기장치 등에 이상이 있을 때

O 유해가스 측정 장소

- 면적 및 깊이를 고려하여 밀폐공간 내부를 골고루 측정 (작업장소에 대해 수직 및 수평방향으로 각각 3개소 이상 측정)
- 탱크 등 깊은 장소의 농도를 측정할 때에는 고무호스나 PVC로 된 채기관으로 측정(채기관은 1m 마다 작은 눈금으로, 5m 마다 큰 눈금으로 표시)

O 유해가스 측정 시 유의사항

- 측정기는 사전에 이상이 없는지 검사를 하여야 합니다. 깨끗한 야외 공기에서 검사를 했을 때 산소농도가 20.9%를 초과하거나 미만으로 나타나면 교정이 필요한 상태입니다. 유해가스 측정기도 정기적으로 교정을 하여야 합니다.
- 측정시 밀폐공간 내부를 살펴보기 위해 측정자의 머리(호흡기)가 밀폐공간 개구면 안쪽으로 들어가는 것을 금해야 합니다. 밀폐공간에 유독가스가 차 있다면 개구면 근처에 가기만 해도 위험할 수 있습니다.
- 깊은 곳을 측정해야 할 경우에는 공기호흡기 또는 송기마스크를 착용하고 측정을 하여야 합니다.
- 밀폐공간 내부는 가연성가스가 차 있을 수 있으므로 어두운 내부에서 측정을 하는 경우 방폭구조의 전등을 사용하여야 합니다.
- 긴급상황에 대비해 감시인을 배치하여야 하며, 안전대, 구명 밧줄 등을 준비하여야 합니다.

2 > 환기

- 환기는 밀폐공간내 공기상태를 적정공기 상태로 만들기 위한 수단으로 밀폐공간작업에서 중요한 안전작업 수단입니다.
- 밀폐공간 내 공기상태가 정상범위 내에 있었다 하더라도 작업 중에 산소가 소모되거나 유해 가스가 발생하여 질식을 일으킬 수 있습니다.

- 이 때문에 밀폐공간 내에서 이루어질 작업의 특성을 사전에 검토하여 환기방법을 결정하는 것이 중요합니다.
- 밀폐공간작업 허가 시 적절한 환기방법을 채택하고 있는지 충분히 검토 하여야 합니다.
- 밀폐공간 작업 시 다음 사항에 유념하여 환기를 하여야 합니다.

O 환기시 유의사항

- 환기장치는 밀폐공간 작업 전 테스트를 해서 정상 작동 여부를 확인하십시오. (작동이 되지 않는 경우 교체할 때까지 작업금지)
- 작업 전 밀폐공간 내 공기상태를 적정공기 상태로 만들기 위해 충분히 환기 하십시오.(일반적으로 밀폐공간 체적의 5배 이상의 신선한 공기로 급기)
- 작업 중에는 가능한 계속 환기하십시오.(유해가스 발생우려가 없는 경우는 제외)
- 환기 시에는 급기구와 배기를 적절하게 배치하여 작업장 내 환기가 효과적으로 이루어지도록 하십시오.(유해가스 발생원과 반대방향에 설치)
- 급기부는 깨끗한 공기가 들어올 수 있는 위치에 설치하십시오.(배기부와 떨어져서 설치)
- 송풍관은 가급적 구부리는 부위를 적게 하고, 용접불꽃 등에 의해 구멍이 나지 않도록 난연 재질을 사용하십시오.
- 환기만으로 적정공기를 유지하기 힘든 경우. 반드시 호흡보호구를 착용하십시오.

3 > 보호장구의 사용

- 밀폐공간 작업시 필요한 보호장구에는
 - ① 호흡기 보호를 위한 호흡용 보호구
 - ② 추락사고 예방을 위한 안전대, 보호가드, 구명 밧줄 등
 - ③ 구조용 삼각대. 무전기, 경보기 등 이 있습니다.
- 이러한 보호장구는 작업이나 긴급상황에서 언제든지 즉각적으로 사용가능한 상태로 유지하여야 하며, 근로자들에게 사용방법 등에 관한 충분한 교육을 실시하여야 합니다.

▶ 호흡용보호구(공기호흡기 또는 송기마스크)

- 환기를 할 수 없거나 환기만으로 불충분한 경우에는 호흡용보호구를 반드시 착용하고 출입하여야 합니다.
- O 호흡용보호구의 착용 장소
 - 유해가스가 지속적으로 발생하여 환기만으로 적정공기를 유지하기 힘든 경우
 - 탱크. 화학설비. 수도나 도수관 등 구조적으로 충분히 환기가 힘든 경우
 - 응급상황이 발생하여 충분히 환기시킬 시간적 여유가 없는 경우

공기호흡기(SCBA)

- 밀폐공간은 장소가 협소하여 공기호흡기를 차고 들어가기 어려울 수 있습니다. 이 경우 외부에서 공기를 공급하는 방식의 송기마스크를 착용하는 것이 더 안전할 수 있습니다.
- □ 다만 송기마스크의 송기라인이 꼬이거나 끊어지지 않도록 잘 관리하여야 하며, 정전 등으로 공기공급이 중단되는 경우가 없도록 대비하여야 합니다.
- ⚠ 산소농도가 18% 미만인 장소에서 공기정화식 호흡보호구(방독마스트 등)는 전혀 도움이 되지 않습니다. 반드시 공기호흡기(SCBA)나 송기 마스크를 착용토록 하십시오.

● 안전대와 구명줄, 구조용 삼각대

- 밀폐공간은 용기·탱크 등 시설 내부, 지하, 갱, 맨홀, 피트로 들어가는 경우 승강구나 오르내리는 사다리가 있을 수 있습니다. 따라서 들어가는 과정이나 내부에서 작업할 때 추락 위험이 있습니다.
- 탱크 바닥이나 기타 습기 찬 환경의 바닥, 사다리 발판이 매우 미끄러울 수 있습니다.
- 이러한 추락위험에 대비하기 위해 안전대와, 구명 밧줄을 착용하여야 합니다.

• 또한 응급상황 발생 시 밀폐공간 내부로 들어가지 않고 외부에서 구조하기 위한 구조용 삼각대 등을 갖추어 두어야 합니다.

4

유해가스 발생장소 조치

❷ 용접 등에 관한 조치

 탱크, 보일러 또는 반응탑의 내부 등 통풍이 불충분한 장소에서 용접을 하는 경우에는 다음 조치를 하여야 합니다.

- 환기 등의 방법으로 작업장소를 적정한 공기 상태로 유지할 것
- 근로자에게 송기마스크 등을 지급하여 착용 하도록 할 것

불활성기체 사용 시 조치

• 불활성기체를 내보내는 배관이 있는 보일러, 탱크, 반응탑 또는 선창 등의 장소에서 작업을 하는 경우에는 다음 조치를 하여야 합니다.

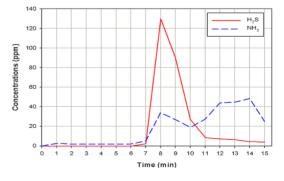
- 밸브 또는 코크를 잠그거나 차단판을 설치할 것
- 밸브 또는 코크와 차단판에는 잠금장치를 하고 이를 임의로 개방하는 것을 금지시키는 뜻을 보기 쉬운 장소에 게시할 것
- 불활성기체를 내보내는 배관의 밸브 또는 코크나 이를 조작하기 위한 스위치 또는 누름단추 등에

대하여는 오조작으로 인하여 불활성기체가 새지 않도록 배관 내에 불활성기체의 명칭 및 개폐의 방향 등 조작방법에 관한 표지를 게시할 것

• 불활성기체가 배출될 우려가 있는 작업을 하는 경우에는 당해 안전판으로부터 배출되는 불활성 기체를 직접 외부로 내보내기 위한 설비를 설치 하는 등 당해 불활성기체가 당해 작업 장소에 잔류하는 것을 방지하기 위한 조치를 할 것

♪ 가스배관 공사 등에 관한 조치

 지하실 또는 맨홀의 내부, 그 밖에 통풍이 불충분한 장소에서 가스를 공급하는 배관을 해체 또는 부착하는 작업을 하는 경우에는 다음 조치를 하여야 합니다.


- 배관을 해체 또는 부착하는 작업장소에 당해 가스가 들어오지 않도록 차단할 것
- 당해작업을 행하는 장소는 적정한 공기상태가 유지되도록 환기를 하거나 근로자에게 송기 마스크 등 을 지급하여 착용할 것

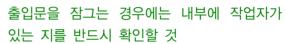
설비개조 등의 작업 시 조치

- 분뇨, 오수, 펄프액 및 부패하기 쉬운 물질에 오염된 펌프, 배관, 그 밖의 부속설비에 대하여 분해, 개조, 수리 또는 청소 등을 행하는 작업을 하는 경우에는 다음 조치를 하여야 합니다.
 - 작업방법 및 순서를 정하여 사전에 작업에 종사하는 근로자에게 널리 알릴 것
 - 황화수소 중독방지에 필요한 지식을 가진 자를 당해 작업의 지휘자로 지정하여 작업을 지휘하도록 할 것

▼ 거품효과(Soda can effect)
작업과정에서 분뇨, 오수, 펄프액
및 부패하기 쉬운 물질을 휘저을
경우 황화수소, 암모니아, 탄산
가스가 급격히 고농도로 발생할
가능성이 높으므로 반드시 공기
호흡기를 착용하여야 함

◆ 소화설비 등에 대한 조치

- 통풍이 불충분한 장소에서 탄산가스를 사용하는 소화기 또는 소화설비를
 사용할 때에는 다음 조치를 하여야 합니다.
 - 당해 소화기 또는 소화설비가 쉽게 뒤집히거나 손잡이가 쉽게 작동되어 탄산가스가 새어나가지 않도록 할 것
 - 소화를 위하여 작동하는 경우 외에 소화기 또는 소화설비를 임의로 작동시키는 것을 금지할 것


- 소화설비가 설치 된 장소에서의 유지·보수작업시 작업시작전에는 다음 조치를 하여야 합니다.
- 작업 시작 전 소방시설 운영 담당자와 작업장소 도면 검토 및 현장조사 실시
 - 작업장소에 설치된 소화설비의 종류, 배치도, 화재감지기의 종류 및 형식,
 CO₂ 소화설비 작동 위험성, 경보장치 작동, 대피 출입문 위치, 안전조치 사항
 등
- CO₂소화설비가 설치된 장소에서 작업시(화기사용 또는 연기가 발생 할 우려가 있는 작업)에는 오작동 방지를 위해 자동·수동전환스위치는 반드시『수동』 측으로 전환(제어반의 솔레노이드밸브 연동정지)조치를 한 상태에서 작업을 실시하고,
- 해당장소에 안전수칙(안전수칙 내용, 담당자 및 연락처) 게시 및 외부인 출입 금지표지 설치
 - ※ 자동·수동전환은 열쇠 등이 아니면 실시할 수 없는 구조로 되어있어야 함.
- 화재 및 오작동 등에 의한 소화설비 작동시 조치사항 등에 대한 안전보건교육 실시
- 경보설비 및 이산화탄소 소화설비 감지기가 작동 후 이산화탄소가 방출되기 30초 이내에 대피하는 방법, 이산화탄소의 유해성 등
- 이산화탄소가 방출된 장소에 들어가기 전에 완전히 환기가 되기 전까지는 절대로 들어가지 말아야 하며.
- 인명구조 등으로 꼭 들어가야 할 경우에는 공기호흡기를 착용하여야 함

출입문. 출입구의 임의잠김 방지

• 탱크·반응탑, 냉장실·냉동실 등 내부, 그 밖의 밀폐시설에서 작업하는 경우에 근로자가 작업하는 동안 설비의 출입뚜껑 또는 출입문이 임의로 잠기지 않도록 조치하고 작업하도록 할 것

• 작업을 마치고 출입뚜껑 또는

지하실 등의 작업 시 조치

- 지층 또는 우물 등의 내부를 통하는 배관이 설치되어 있는 지하실 또는 피트 등의 내부에서 작업을 하는 경우에는 당해 배관을 통하여 산소가 결핍된 공기나 유해가스가 새지 않도록 조치할 것
- 산소가 결핍된 공기나 유해가스가 샐 때에는 이를 직접 외부로 내보낼 수 있는 설비를 설치하는 등 적정한 공기상태를 유지하도록 조치할 것

● 압기공법에 관한 조치

- 지층이나 그와 인접한 장소에서 압기공법에 의하여 작업을 할 때에는 당해 작업에 의하여 유해가스가 샐 우려가 있는지의 여부 및 공기 중의 산소농도를 조사할 것
- 조사결과, 유해가스가 새고 있거나 공기 중에 산소가 부족할 때에는 즉시 작업을 중지하고 출입금지를 시키는 등 필요한 조치를 할 것

5 > 작업관리

○ 안전담당자(관리감독자)의 직무

• 밀폐공간에서 작업을 하는 경우 안전담당자(관리감독자)를 지정하여 다음과 같은 직무를 수행 하도록 하여야 합니다.

O 안전담당자의 직무

- 산소가 결핍된 공기나 유해가스에 노출되지 않도록 작업 시작 전에 작업 방법을 결정하고 이에 따라 당해 근로자의 작업을 지휘
- 작업을 행하는 장소의 공기가 적정한지 여부를 작업시작 전에 확인
- 측정장비, 환기장치 또는 송기마스크 등을 작업시작 전에 점검
- 근로자에게 송기마스크 등의 착용을 지도하고 착용상황을 점검
- © 안전담당자(관리감독자)의 점검결과, 이상을 발견하여 보고할 때 사업주는 즉시 환기, 보호구 지급, 설비보수 등의 필요한 조치를 실시하여야 합니다.

○ 감시인의 배치

- 밀폐공간에 근로자를 종사하도록 할 때에는 상시작업 상황을 감시할
 수 있는 감시인을 지정하여 밀폐공간 외부에 배치하여야 합니다.
- 감시인은 밀폐공간 내 근로자에게 이상이 있을 때 구조요청 등 필요한
 조치를 한 후 이를 즉시 안전담당자나 그 밖의 관리감독자에게 알려야
 합니다.

● 인원의 점검

• 밀폐공간에서 작업을 하는 경우에는 출입 하는 근로자의 인원을 상시 점검하여야 합니다.

● 출입의 금지

• 밀폐공간 내에서 작업시에는 관계 근로자 외의 출입을 금지시킨 후 금지 표지판을 보기 쉬운 장소에 게시하여야 합니다.

● 연락체제 구축

• 밀폐공간 내부와 외부 사이에 상시 연락할 수 있는 장비 및 설비를 갖추어야합니다.

▶ 밀페공간작업 전 안전한 작업방법 등에 관한 주지

밀폐공간 작업 시에는 매 작업 시작
 전 다음 사항에 대하여 해당 작업
 근로자에게 알려야 합니다.

O 밀폐공간 작업장 주지사항

- 산소 및 유해가스 농도측정에 관한 사항
- 사고 시 응급조치 요령
- 환기설비의 가동
- 보호구 착용 및 사용방법에 관한 사항
- 구조용 장비 사용 등 비상 시 구출에 관한 사항

재해자 구조와 심폐소생술

1 자해자 구조

- ▶ 밀폐공간에서 질식 재해자를 구조하는 것은 밀폐공간 입구와 내부의 협소성, 산소결핍 또는 유해가스의 존재 등으로 상당히 어렵고 위험합니다. 반드시 다음 절차에 따라 재해자를 구조하십시오.
 - O 밀폐공간에서 작업자가 쓰러진 것을 발견한 경우
 - 밀폐공간 내 재해자를 발견한 경우, 먼저 119나 회사내 안전보건관리팀에 연락하십시오.
 - 재해자를 구조하기 위해 공기호흡기(SCBA)나 송기마스크를 착용하십시오.
 - △ 자칫 송기마스크 등 보호장구 없이 밀폐공간 내부로 들어갔다가는 구조자 또한 위험해질 수 있습니다. 밀폐공간 재해자 중 상당수는 보호장구 없이 들어간 구조자 였음을 기억하십시오.
 - ⚠ 밀폐공간 내부의 공기상태가 안전한지 확인할 수 없거나 적절한 호흡용 보호구가 없다면 밀폐공간 밖에서 119 구조대가 올 때까지 기다리십시오.
 - 구조된 재해자에 대해 심폐소생술을 실시하십시오.

2 심폐소생술

순	서	실 시 방 법				
반응확인		○ 무반응, 무호흡 또는 비정상 호흡 확인				
심폐소생술	흉 압박 (30회) → 기유 → 인호(2회 → 흉 압 & 인호	○ 흉부압박 위치 확인 : 양 젖꼭지를 이은 중앙의 흉부부위 ○ 한손의 손등에 다른 손을 겹치고 깍지를 껴서 손가락을 잡아 당김 ○ 팔꿈치가 구부러지지 않도록 하고, 어깨와 손은 일직선으로 유지 ○ 흉부압박 깊이는 4~5cm의 깊이로 압박 ○ 흉부압박의 속도 : 1분간 100회 이상 120회 미만의 속도 유지				
	호흡 반복	〈기도유지 : 머리젖히고 턱들기〉 〈인공호흡〉 〈흉부압박&인공호흡 반복〉				
○ 심폐소생술 중 재해자가 움직이거나 소리를 내면 ○ 호흡이 회복되었는지 확인하고 호흡이 회복되었다면 ○ 재해자를 옆으로 돌려 눕혀 기도(숨길)가 막히는 것을 예방		○ 호흡이 회복되었는지 확인하고 호흡이 회복되었다면				

밀폐공간 질식재해 사례

1. 배관용접 또는 비파괴 작업에서의 질식재해사례

(1) 도시가스 배관 용접 결함 부위 수정 작업: 사망 1명

2014년 8월 도시가스 배관 이설공사 현장에서 용접사가 배관 내부 용접 결함 부위 점검 작업 중 배관 내 체류 중인 질소가스에 의한 산소결핍으로 사망

(2) 아르곤가스 퍼지상태 확인작업: 사망 1명

2013년 4월 LNG선 Cofferdam 내부에서 배관의 중간부 조정관 설치를 위해 배관에 아르곤가스를 충전 하던 중 충전이 잘되지 않아 바닥맨홀에 있는 배관입구의 아르곤가스 퍼지상태를 확인하던 중 누설된 아르곤가스로 인하여 질식 사망함

(3) 배관내부 용접상태 확인작업: 사망 1명

2008년 4월 작업장내 LNG선 가스주입구 배관 용접작업시 작업자(1명)가 배관내부의 용접부위를 확인하기 위해 배관안으로 들어가다가 배관내부에 충진되는 아르곤가스에 의한 산소결핍으로 질식되어 사망함

(4) 배관용접 준비작업: 사망 1명

2007년 12월 압력용기 제작공장에서 용접작업자가 열교환기 Head부분 외부를 티그용접 하기 위해 열교환기 내부에 가스 차단막(스펀지)을 설치하던 중 아르곤 가스가 누출되어 산소결핍에 의한 질식으로 사망함.

(5) 용접배관 내부 용접상태 확인작업 : 사망 1명

2007년 9월 중공업내 LNG선의 SUS배관 용접 후 배관내부에 머리를 숙이고 용접상태를 확인하다가 충진된 아르곤 가스에 의한 산소결핍으로 작업자 1명이 질식되어 사망함

(6) 용접배관내부 비파괴 검사작업 : 사망 2명

2006년 9월 LNG 저장탱크 건설 현장에서 작업자 2명이 배관 용접부 비파괴검사를 준비를 위해 배관내부에 들어갔다가 용접작업을 위해 충진된 아르곤 가스에 의한 산소 결핍으로 질식되어 사망함

2. 로, 반응기 또는 저장탱크에서의 질식재해사례

(1) 반응기 내부 청소 및 점검 작업: 사망 1명

2014년 3월 화학공장에서 생산직 근로자 1명이 반응기 내부 청소 및 너트와 와셔의 이탈 여부를 확인하러 반응기에 혼자 들어갔다가 잔류 질소에 의한 산소결핌으로 사망

(2) 콜드박스 내부 점검작업: 사망 2명

2013년 12월 산소공장 신설공사 현장에서 산소 등 생산설비인 콜드박스(Cold Box) 구조물설치 완료 후 시운전 단계에서 협력업체 근로자 2명이 콜드박스 상부에서 맨홀을 통해 내부를 점검하던 중 산소결핍으로 질식되어 사망

(3) 로 보수작업: 사망 5명

2013년 5월 전로 내부의 내화벽돌 보수작업을 마치고 다음날 작업발판을 해체하기 위해 전로 내부로 들어가던 중 내부에 유입되어 있던 아르곤가스에 질식되어 작업자 5명이 사망함

(4) 저장탱크 확인작업: 사망 1명

2011년 1월 초순수 저장탱크에서 초순수의 기포발생 상태를 확인하기 위하여 탱크 덮개를 열어 내부를 확인하던 중 개구부에서 유출된 질소가스에 의한 질식으로 사망함

(5) 배합조 내부점검 작업 : 사망 1명

2009년 7월 코팅액 제조사업장에서 작업 후 비어있는 배합조(반응기) 내부 점검을 위해 들어갔다가 톨루엔 등의 유해가스 중독에 의한 질식으로 작업자 1명이 사망함

(6) 반응기 세척작업 후 내부점검 : 사망 1명

2008년 10월 화학공장에서 반응기 내부 세척작업을 완료 후 작업자 1명이 반응기 내부 점검을 위해 들어갔다가 산소결핍에 의한 질식으로 사망함

(7) 저장탱크 청소작업: 사망 1명

2008년 9월 폐수종말처리장에서 유해물질 저장 탱크 청소 작업 중 탱크 내부 바닥면에 제거되지 않는 혼탁액을 제거하러 들어갔다가 유해가스 중독에 의한 질식으로 작업자 1명이 사망함

3. 지하 기계실에서의 질식재해사례

(1) 기계실 소화설비 점검작업 : 사망 1명

2014년 3월 반도체공장 기계실에서 작업 중이던 협력업체 근로자 1명이 소방설비(CO₂ 소화설비) 오작동으로 누출된 이산화탄소에 의해 질식 사망

(2) 기계실 냉동기 보수작업: 사망 4명

2011년 7월 대형 유통쇼핑몰내의 지하기계실에서 작업자 4명이 냉동기 보수작업 중에 냉매가스(프레온 123)의 회수배관 연결부 또는 냉동기 내부 잔류 냉매가스가 작업장으로 누출되어 작업자 4명이 모두 질식되어 사망함

(3) 기계실 설비 보수작업: 사망 1명, 부상 2명

2011년 9월 엔진제조 사업장의 지하 기계실에서 근로자 3명이 Air 공급 라인에 Block Valve를 설치하기 위해 산소절단기(산소+LPG)로 배관 절단 작업 중 절단 작업 시 발생한 연기에 의해 천장에 있는 소화설비용 연기감지기의 작동으로 분사된 CO2(이산화탄소) 가스에 의해 근로자 3명이 질식되어 1명이 사망하고 2명이 부상함

4. 통신·도시가스·수도 맨홀에서의 질식재해사례

(1) 도시가스 맨홀 내부 밸브 점검 작업: 사망 1명, 부상 1명

2013년 1월 도시가스 맨홀 내부에서 밸브 점검 작업자 2명이 차단밸브 개폐작동 불량 등 점검하던 중 LNG(메탄주성분) 가스 누출로 질식되어 1명 사망. 1명 부상함

(2) 선로공사 양수작업: 사망 1명, 부상 1명

2011년 8월 CCC망구축 기간망 선로공사를 위해 작업자가 양수작업 후 맨홀에 들어 가다가 양수기 배기가스의 일산화탄소 중독에 의한 질식으로 쓰러지고, 이를 목격한 동료 직원들이 쓰러진 작업자를 구출하러 맨홀에 들어갔다가 질식으로 쓰러져 1명이 사망하고 1명이 부상함

(3) 상수도 맨홀 측량작업 : 사망 1명, 부상 2명

2011년 7월 도로상 맨홀에서 상수도 지리정보시스템 측량작업을 위해 작업자 1명이 내부로 내려가다가 산소결핍에 의한 질식으로 쓰러지자 동료작업자 2명이 이를 구조하려고 함께 들어가다가 모두 쓰러져 1명이 사망하고 2명이 부상함

(4) 아파트 맨홀 수도검침 작업 : 사망 1명, 부상 1명

2011년 7월 아파트 수도 맨홀에서 수도검침 작업자 1명이 맨홀 내부에 내려가다 산소 결핍에 의한 질식으로 사망하였으며, 구조를 하던 관리사무소 직원 1명이 부상함

(5) 취수관로상 맨홀 양수작업 : 사망 1명, 부상 1명

2009년 11월 화력발전소 취수관로상의 지하매설 유지맨홀에서 작업자 2명이 맨홀내부의 양수작업 중 엔진펌프(연료: 가솔린)에서 발생된 연소가스중의 일산화탄소 중독에의한 질식으로 1명이 사망하고 1명이 부상함

(6) 무선기지국 에어컨 수리작업 : 사망 1명

2007년 8월 KT무인기지국 내부에서 에어컨 수리를 의뢰 받은 작업자 1명이 과열된 냉매압축기의 온도를 낮추기 위해 냉매제(클로로디플루오르메탄, 프레온 22)를 직접 분사 하던 중 냉매제에 의한 질식으로 쓰러져 사망함

(7) 상수도 맨홀 보수작업: 사망 2명

2007년 8월 상수도 맨홀내 상수도관 파열로 보수작업을 위한 상수도관 밸브를 잠그러 맨홀내부로 들어갔다가 산소결핍에 의한 질식으로 작업자 1명이 사망하고, 이를 구하러 들어간 동료작업자 1명이 추가로 질식되어 사망함

(8) 하수종말처리장 유입게이트 맨홀 보수작업 : 사망 4명

2007년 6월 하수종말처리장 하수유입구 보수작업을 위해 6m 이상 깊이의 맨홀 내부로 내려가 작업을 하던 중 황화수소 등의 유해가스 중독에 의한 질식으로 사망함

5. 건설현장 콘크리트 양생작업에서의 질식재해사례

(1) 아파트 신축현장 피트 내부 양생 점검 : 사망 2명, 부상 1명

2014년 12월 아파트 신축현장의 피트 내부로 들어가 콘크리트 보온양생을 위해 갈탄 보충작업, 내부 온도 측정 및 온도 관리 일지 작성 작업 중 갈탄에서 발생한 일산화탄소에 질식되어 작업자 2명이 사망하고 1명이 부상함

(2) 아파트 건설현장 거푸집 형틀 보강 작업 : 사망 2명

2013년 12월 아파트 신축공사 현장에서 헙력업체 근로자 2명이 지하 1층 우수조 내부로 들어가 거푸집 형틀 보강 작업 중 양생용 갈탄난로에서 발생한 일산화탄소에 의한 질식으로 사망함

(3) 아파트 건설현장 기계실 내부 양생온도 확인 : 사망 1명

2012년 3월 아파트건설공사 3공구내 옥탑층 공사 현장에서 옥탑 2층 엘리베이터 기계실 콘크리트 타설 후 양생작업 중 화로의 상태 및 양생 온도를 확인하기 위해 양생작업장 내부로 들어갔다가 일산화탄소 중독에 의한 질식으로 사망함

(4) 아파트 건설현장 괴탄 추가투입작업 : 사망 1명

2011년 12월 아파트 건설공사 1공구 현장에서 지하 PIT 및 지상1층 슬래브 콘크리트 타설 후 양생을 위하여 지하PIT층 괴탄난로에 괴탄을 추가 투입하기 위하여 들어갔다가 일산화탄소 중독에 의한 질식으로 사망함

(5) 교정시설 공사현장 양생작업: 사망 1명

2010년 2월 교정시설 신축 공사장내에 빗물처리조 콘크리트 타설 후 내부에 양생용 갈탄난로 설치하고 양생작업 중인 상태에서 작업자 1명이 내부에서 일산화탄소에 의한 질식으로 사망한 상태로 발견됨

(6) 아파트 건설현장 지하 콘크리트 양생상태 확인 : 사망 1명

2009년 3월 아파트 건설공사 현장에서 지하 콘크리트 양생 작업 후 갈탄난로를 사용하여 보온작업 상태에서 작업자(1명)가 이들 상태를 확인하러 지하로 들어 갔다가 갈탄 연소과정에서 발생된 일산화탄소 중독에 의한 질식 사망함

6. 폐수처리시설에서의 질식재해사례

(1) 탈수동 지하 집수정 수중오수펌프 교체작업: 사망 1명

2014년 6월 지자체 오수처리장 탈수기동 지하1층 기계실 내부 집수정 내부에서 수중 오수펌프 교체작업을 하던 작업자 1명이 황화수소 중독으로 사망

(2) 음식폐기물 폐수처리장 수리작업: 사망 2명

2013년 2월 음식폐기물 폐수처리장에서 외국인 근로자 1명이 폐수 분출구 하단부 수리를 위해 폐수저장탱크에 입조 작업 중 일산화탄소 등 유해가스 흡입 후 허우적거리며 쓰러지는 것을 동료 작업자가 목격하고 구조하러 들어갔다가 2명 모두 사망

(3) 폐수처리장 침전조 슬러지 제거작업: 사망 2명, 부상 2명

2012년 3월 도금사업장 내 자가폐수처리시설의 운영위탁업체에서 근로자 1명이 퇴적된 슬러지를 제거작업 중 배수펌프가 막혀 이를 확인하러 침전조에 들어갔다가 유해가스 (황화수소) 중독에 의한 질식으로 쓰러지자 침전조 밖에서 지켜보고 있던 동료근로자 1명이 구조하러 들어갔다가 질식되어 쓰러졌고, 뒤 늦게 현장에 도착한 또 다른 동료근로자 2명이 구조하러 들어갔다가 차례로 질식되어 쓰러져 2명이 사망하고. 2명이 부상함

(4) 폐수처리장 슬러지 제거작업 : 사망 1명, 부상 1명

2009년 1월 도금공단 내 폐수처리시설의 산소배관 설치에 따른 피혁 폐수 슬러지 제거 작업 중 슬러지 제거 펌프 배관이 막히자 이를 제거하기 위해 작업자가 유량조정조 내부로 들어가다가 황화수소 중독에 의한 질식으로 쓰러지자 동료 작업자가 구출 중 함께 쓰러져 1명이 사망하고 1명이 부상함

(5) 폐수처리장 집수조 슬러지 제거작업 : 사망 1명, 부상 3명

2008년 6월 식품공장 내 폐수처리장 집수조에서 4명의 작업자가 슬러지제거 작업을 하던 중 고농도의 황화수소에 중독에 의한 질식으로 1명이 사망하고 3명이 부상함

(6) 폐수처리장 내 청소작업 : 사망 1명

2007년 6월 식품공장의 폐수처리장 내에서 청소작업을 하고 있던 작업자가 황화수소로 추정되는 유해가스 중독에 의한 질식으로 폐수처리장 농축조에서 사망한 상태로 발견됨

(7) 폐수처리장 저류조 점검작업 : 사망 1명

2006년 2월 폐수처리장 탈수동 지하 저류조의 슬러지 수위를 확인하던 작업자가 슬러지에서 발생하는 고농도 황화수소 중독에 의한 질식으로 사망함

7. 상하수도시설에서의 질식재해사례

(1) 오수처리장 정기점검 작업: 사망 1명

2011년 7월 상가건물 내 오수처리시설 설비 점검을 위해 위탁업체 근로자가 현장에 대기하던 중에 지하 오수처리장내에서 화재경보기가 울려 이를 점검하러 진입하였다가 황화수소 중독에 의한 질식으로 사망함

(2) 하수관거 정비공사 작업: 사망 1명, 부상 1명

2011년 5월 도로상 하수관거 정비공사 작업을 위해 맨홀내부로 내려가다가 산소결핍에 의한 질식으로 쓰러지자 동료작업자가 구출하려고 따라 들어갔다가 함께 쓰러져 119에 구조되어 병원으로 후송되었으나 1명이 사망하고 1명이 부상함

(3) 아파트 정화조 폐쇄작업 : 사망 2명, 부상 6명

2010년 7월과 8월 아파트 정화조 폐쇄공사 현장에서 시설내부 철거작업 및 바닥의 하수 (퇴적물)를 제거하는 작업 중에 하수에서 발생된 황화수소 중독에 의한 질식으로 2건의 재해가 발생하여 2명이 사망하고, 이를 구하러 들어가 동료작업자 6명이 함께 질식되어 부상함

(4) 학교 정화조 폐쇄작업 : 사망 1명

2010년 8월 초등학교 하수처리시설 정화조 등의 시설 폐쇄공사를 위한 사전 견적을 내기 위해 정화조 내부로 들어갔다가 정화조 내부에 잔류하던 황화수소 중독에 의한 질식으로 1명 사망

(5) 하수종말처리장 혼합저류조내 슬러지 제거작업 : 사망 1명, 부상 1명

2009년 5월 작업자 1명이 하수처리장 내 혼합저류조내에 들어가 슬러지 제거작업을 준비하던 중 황화수소 중독에 의한 질식으로 쓰러지자 이를 목격한 동료 작업자가 구출하려고 들어갔다가 본인도 쓰러져 1명이 사망하고 1명 부상함

8. 축산농가에서의 질식재해사례

(1) 양돈농장 사료혼합탱크 사료 배출 작업 : 사망 1명

2014년 10월 양돈농장 사료 혼합탱크에서 작업자가 사료 배출작업을 하던 중 탱크바닥의 잔여 사료를 배출하기 위해 탱크 내부에 들어갔다가 일산화탄소 등 유해가스에 중독되어 사망

(2) 양돈농장 돈분임시저장소 점검작업: 사망 1명

2014년 7월 양돈 축산농가 기계실에서 근로자가 돈분임시저장소 수위를 확인하기 위해 비계에 올라가 점검창을 통해 수위를 점검하던 중 점검창을 통해 노출된 황화수소로 인해 의식을 잃고 쓰러지면서 추락 사망함

(3) 양돈농장 돈분 제거작업: 사망 4명

2010년 5월 양돈농장에서 돈사와 집수조 연결 관로의 돈분을 제거 작업 중 돈분에서 발생된 황화수소에 의한 질식으로 작업자 2명이 사망하고 이를 구하러 들어간 농장주 및 농장주 아들이 함께 사망함

(4) 양돈농장 분뇨 펌핑작업: 사망 2명

2010년 8월 양돈농장 분뇨처리시설 콘크리트조 1단계 탱크에서 펌핑작업을 하던 작업자 2명이 분뇨에서 발생된 황화수소에 의한 질식으로 사망함

(5) 양돈농장 정화조 청소작업 : 사망 2명

2008년 8월 양돈 축산농가에서 작업자가 정화조 청소를 위해 상부덮개를 열고 내부로 내려가다가 황화수소 중독으로 인해 의식을 잃고 쓰러지고, 탱크 외부에서 이를 목격한 농장주가 탱크 내부로 내려가 구출작업을 하던 중 함께 중독되어 2명 모두 질식 사망함

9. 음식물쓰레기 처리장에서의 질식재해사례

(1) 음식물처리장 탈리액 저장조 보수작업: 사망 2명

2007년 6월 음식물 탈리액 저장조에 설치된 고장난 수중펌프를 인양하기 위해 들어갔다가 황화수소 등의 유해가스 중독에 의한 질식으로 작업자 1명이 사망하고, 이를 구하러 들어간 동료작업자가 추가로 질식되어 사망함

(2) 음식물처리장 반입저장 투입호퍼 이물질 제거작업: 사망 1명

2007년 6월 음식물 쓰레기 반입저장조에 투입 중 호퍼내부에 떨어진 비닐 회수 중 산소 결핍에 의한 질식으로 사망하고, 이를 구조하러 들어갔다가 작업자 2명이 함께 질식되어 쓰러 졌으나 병원치료 후 회복함

10. 바지선에서의 질식재해사례

(1) 바지선 부력탱크 양수작업: 사망 1명

2008년 3월 바지선(시멘트) 부력탱크 내부 양수작업 중 양수기(가솔린 내연기관)에서 발생된 일산화탄소 중독에 의한 질식으로 작업자 1명이 사망함

(2) 바지선 부력탱크 수리견적작업: 사망 3명

2007년 10월 해안에 정박해 있는 교량공사 시추공 고정용 바지선 수리견적 위해 사업주와 작업자 2명이 바지선 부력탱크 내부로 들어가다가 산소결핍에 의한 질식으로 모두 사망함

11. 기타 작업에서의 질식재해사례

(1) 이산화탄소 소화설비 작동에 의한 질식사고 : 사망 1명, 부상 7명

2015년 2월 호텔 보일러실에서 노후된 배관 및 벽체 단열재(유리섬유) 제거작업 중 소화설비 작동으로 이산화탄소 가스가 방출되어 질식으로 1명이 사망하고 7명이 부상함

(2) 장비 유지 보수작업: 사망 3명, 부상 3명

2015년 1월 반도체공장 클린 룸에서 협력업체 근로자 3명이 장비 유지·보수작업을 위해 설비 내부로 들어가면서, 설비 내부에 조성된 질소가스에 의한 산소결핍으로 3명이 사망하고 구조과정에서 근로자 3명이 부상함

(3) 원전 건설공사 질식사고 : 사망 3명

2014년 12월 원전보조시설 건설현장 내 밸브룸을 순찰 중이던 근로자 2명과 이들을 구출 하려던 근로자 1명이 밸브룸 내부의 질소배관 연결 밸브에서 누출된 질소가스에 의한 산소 결핍으로 사망

(4) 원목운반선 하역 작업: 사망 1명, 부상 1명

2011년 6월 인천내항에 정박한 선박의 선창내부에 있던 각재 및 원목을 내리기 위하여 작업자 3명이 HOLD#3 내부로 이동 중 산소결핍에 의한 질식으로 1명이 사망하고 1명이 부상함

(5) 아르곤 퍼지 작업: 사망 1명

2011년 3월 플랜트 제조사업장에서 협력사 소속 작업자가 용접시 산화방지를 위해 찬넬 내부에서 아르곤 퍼지 작업 중 산소결핍으로 질식되어 사망함

(6) 활성탄 여과탱크 충진작업 : 사망 1명

2011년 3월 SRU 공장 신축현장에서 협력사 소속 작업자가 활성탄여과 탱크 내부로 들어가 탱크에 충진된 활성탄 평탄 작업 중 산소결핍에 의한 질식으로 사망함

(7) 음료제조사업장 실리카 용해탱크 작업: 사망 2명

2010년 12월 음료제조사업장에서 탄산수에 실리카를 용해하는 탱크내부에 떨어져 있던 칼 (실리카 지대포장 개봉용)을 꺼내기 위해 용해공정 컨트롤룸에 근무하던 2명의 근로자가 실리카 용해 탱크에 들어갔다가 탱크 내부에 잔류되어 있던 이산화탄소로 인한 산소결핍으로 2명 질식되어 사망함

(8) 건조창고 내 휴식 : 사망 1명

2010년 3월 선재 가공 및 못 제조업체의 단두신선공정 야간작업자(1명)가 휴식시간 중에 마정 공정에서 사용하기 위해 설치한 톱밥건조창고에 들어가 취침 중 열처리로 및 가스발생기 배기 가스에 의한 산소결핍 및 CO 중독에 의한 질식으로 사망함

밀폐공간작업

질식재해예방 매뉴얼

발행일 2015년 4월

발행인고용노동부, 안전보건공단발행처안전보건공단 직업건강실

Tel: 052) 703-0649

≪비매품≫